Spaces:
Running
Running
import gradio as gr | |
from random import randint | |
from all_models import models | |
from externalmod import gr_Interface_load, randomize_seed | |
import asyncio | |
import os | |
from threading import RLock | |
# Create a lock to ensure thread safety when accessing shared resources | |
lock = RLock() | |
# Load Hugging Face token from environment variable, if available | |
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary. | |
# Function to load all models specified in the 'models' list | |
def load_fn(models): | |
global models_load | |
models_load = {} | |
# Iterate through all models to load them | |
for model in models: | |
if model not in models_load.keys(): | |
try: | |
# Log model loading attempt | |
print(f"Attempting to load model: {model}") | |
# Load model interface using externalmod function | |
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN) | |
print(f"Successfully loaded model: {model}") | |
except Exception as error: | |
# In case of an error, print it and create a placeholder interface | |
print(f"Error loading model {model}: {error}") | |
m = gr.Interface(lambda: None, ['text'], ['image']) | |
# Update the models_load dictionary with the loaded model | |
models_load.update({model: m}) | |
# Load all models defined in the 'models' list | |
print("Loading models...") | |
load_fn(models) | |
print("Models loaded successfully.") | |
num_models = 6 | |
# Set the default models to use for inference | |
default_models = models[:num_models] | |
inference_timeout = 600 | |
MAX_SEED = 3999999999 | |
# Generate a starting seed randomly between 1941 and 2024 | |
starting_seed = randint(1941, 2024) | |
print(f"Starting seed: {starting_seed}") | |
# Extend the choices list to ensure it contains 'num_models' elements | |
def extend_choices(choices): | |
print(f"Extending choices: {choices}") | |
extended = choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA'] | |
print(f"Extended choices: {extended}") | |
return extended | |
# Update the image boxes based on selected models | |
def update_imgbox(choices): | |
print(f"Updating image boxes with choices: {choices}") | |
choices_plus = extend_choices(choices[:num_models]) | |
imgboxes = [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus] | |
print(f"Updated image boxes: {imgboxes}") | |
return imgboxes | |
# Asynchronous function to perform inference on a given model | |
async def infer(model_str, prompt, seed=1, timeout=inference_timeout): | |
from pathlib import Path | |
kwargs = {} | |
noise = "" | |
kwargs["seed"] = seed | |
# Create an asynchronous task to run the model inference | |
print(f"Starting inference for model: {model_str} with prompt: '{prompt}' and seed: {seed}") | |
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, | |
prompt=f'{prompt} {noise}', **kwargs, token=HF_TOKEN)) | |
await asyncio.sleep(0) # Allow other tasks to run | |
try: | |
# Wait for the task to complete within the specified timeout | |
result = await asyncio.wait_for(task, timeout=timeout) | |
print(f"Inference completed for model: {model_str}") | |
except (Exception, asyncio.TimeoutError) as e: | |
# Handle any exceptions or timeout errors | |
print(f"Error during inference for model {model_str}: {e}") | |
if not task.done(): | |
task.cancel() | |
print(f"Task cancelled for model: {model_str}") | |
result = None | |
# If the task completed successfully, save the result as an image | |
if task.done() and result is not None: | |
with lock: | |
png_path = "image.png" | |
result.save(png_path) | |
image = str(Path(png_path).resolve()) | |
print(f"Result saved as image: {image}") | |
return image | |
print(f"No result for model: {model_str}") | |
return None | |
# Function to generate an image based on the given model, prompt, and seed | |
def gen_fnseed(model_str, prompt, seed=1): | |
if model_str == 'NA': | |
print(f"Model is 'NA', skipping generation.") | |
return None | |
try: | |
# Create a new event loop to run the asynchronous inference function | |
print(f"Generating image for model: {model_str} with prompt: '{prompt}' and seed: {seed}") | |
loop = asyncio.new_event_loop() | |
result = loop.run_until_complete(infer(model_str, prompt, seed, inference_timeout)) | |
except (Exception, asyncio.CancelledError) as e: | |
# Handle any exceptions or cancelled tasks | |
print(f"Error during generation for model {model_str}: {e}") | |
result = None | |
finally: | |
# Close the event loop | |
loop.close() | |
print(f"Event loop closed for model: {model_str}") | |
return result | |
# Create the Gradio Blocks interface with a custom theme | |
print("Creating Gradio interface...") | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: | |
gr.HTML("<center><h1>Compare-6</h1></center>") | |
with gr.Tab('Compare-6'): | |
# Text input for user prompt | |
txt_input = gr.Textbox(label='Your prompt:', lines=4) | |
# Button to generate images | |
gen_button = gr.Button('Generate up to 6 images in up to 3 minutes total') | |
with gr.Row(): | |
# Slider to select a seed for reproducibility | |
seed = gr.Slider(label="Use a seed to replicate the same image later (maximum 3999999999)", minimum=0, maximum=MAX_SEED, step=1, value=starting_seed, scale=3) | |
# Button to randomize the seed | |
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary", scale=1) | |
# Set up click event to randomize the seed | |
seed_rand.click(randomize_seed, None, [seed], queue=False) | |
print("Seed randomization button set up.") | |
# Button click to start generation | |
gen_button.click(lambda s: gr.update(interactive=True), None) | |
print("Generation button set up.") | |
with gr.Row(): | |
# Create image output components for each model | |
output = [gr.Image(label=m, min_width=480) for m in default_models] | |
# Create hidden textboxes to store the current models | |
current_models = [gr.Textbox(m, visible=False) for m in default_models] | |
# Set up generation events for each model and output image | |
for m, o in zip(current_models, output): | |
print(f"Setting up generation event for model: {m.value}") | |
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fnseed, | |
inputs=[m, txt_input, seed], outputs=[o], concurrency_limit=None, queue=False) | |
# The commented stop button could be used to cancel the generation event | |
#stop_button.click(lambda s: gr.update(interactive=False), None, stop_button, cancels=[gen_event]) | |
# Accordion to allow model selection | |
with gr.Accordion('Model selection'): | |
# Checkbox group to select up to 'num_models' different models | |
model_choice = gr.CheckboxGroup(models, label=f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True) | |
# Update image boxes and current models based on model selection | |
model_choice.change(update_imgbox, model_choice, output) | |
model_choice.change(extend_choices, model_choice, current_models) | |
print("Model selection setup complete.") | |
with gr.Row(): | |
# Placeholder HTML to add additional UI elements if needed | |
gr.HTML( | |
) | |
# Queue settings for handling multiple concurrent requests | |
print("Setting up queue...") | |
demo.queue(default_concurrency_limit=200, max_size=200) | |
print("Launching Gradio interface...") | |
demo.launch(show_api=False, max_threads=400) | |
print("Gradio interface launched successfully.") |