File size: 7,215 Bytes
a63b283
24e3e3c
f4816fe
 
 
 
 
cb44d0b
a63b283
ce3d5f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120f9e9
 
 
 
 
9f2b36a
120f9e9
 
a63b283
887782d
 
6380db8
 
ce3d5f3
 
 
 
 
db312d6
 
ce3d5f3
 
 
 
6380db8
ce3d5f3
 
 
058e220
 
 
 
 
 
 
 
 
ce3d5f3
66ecdd5
 
ce3d5f3
 
66ecdd5
6380db8
887782d
ce3d5f3
887782d
 
 
db312d6
 
 
 
ce3d5f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66ecdd5
 
ce3d5f3
 
 
 
 
 
 
 
 
 
 
058e220
 
 
ce3d5f3
66ecdd5
ce3d5f3
 
 
 
 
6380db8
ce3d5f3
 
 
 
 
 
 
 
 
 
6380db8
ce3d5f3
 
 
 
66ecdd5
058e220
ce3d5f3
 
058e220
 
ce3d5f3
058e220
 
 
 
db312d6
ce3d5f3
66ecdd5
ce3d5f3
 
 
 
 
 
 
 
 
 
116a3d4
 
 
ce3d5f3
 
 
058e220
 
 
ce3d5f3
 
6380db8
ce3d5f3
 
 
 
 
66ecdd5
058e220
 
 
 
ce3d5f3
 
058e220
ce3d5f3
 
 
 
 
8a3eb3c
ce3d5f3
058e220
 
 
 
 
 
 
 
 
 
db312d6
ce3d5f3
 
058e220
ce3d5f3
 
 
058e220
ce3d5f3
 
 
 
 
058e220
b389a18
058e220
ce3d5f3
 
 
532bbbc
ce3d5f3
bcca711
532bbbc
 
 
f915f24
ce3d5f3
532bbbc
 
 
ce3d5f3
 
 
 
 
dc50619
ce3d5f3
 
 
 
dc50619
ce3d5f3
9936464
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import subprocess
# subprocess.run("FLASH_ATTNTION_SKIP_CUDA_BUILD=TRUE pip install flash-attn --no-build-isolation", shell=True)
# subprocess.run(
#     "pip install flash-attn --no-build-isolation",
#     env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
#     shell=True,
# )


from PIL import Image
import gradio as gr
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    AutoImageProcessor,
    AutoModel,
)
from transformers.generation.configuration_utils import GenerationConfig
from transformers.generation import (
    LogitsProcessorList,
    PrefixConstrainedLogitsProcessor,
    UnbatchedClassifierFreeGuidanceLogitsProcessor,
)
import torch
from emu3.mllm.processing_emu3 import Emu3Processor

import io
import base64

def image2str(image):
    buf = io.BytesIO()
    image.save(buf, format="PNG")
    i_str = base64.b64encode(buf.getvalue()).decode()
    return f'<div style="float:left"><img src="data:image/png;base64, {i_str}"></div>'

print(gr.__version__)

device = "cuda" if torch.cuda.is_available() else "cpu"

# Model paths
EMU_GEN_HUB = "BAAI/Emu3-Gen"
EMU_CHAT_HUB = "BAAI/Emu3-Chat"
VQ_HUB = "BAAI/Emu3-VisionTokenizer"


# uncomment to use gen model
# Prepare models and processors
# Emu3-Gen model and processor
gen_model = AutoModelForCausalLM.from_pretrained(
    EMU_GEN_HUB,
    device_map="cpu",
    torch_dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
    trust_remote_code=True,
).eval()

chat_model = AutoModelForCausalLM.from_pretrained(
    EMU_CHAT_HUB,
    device_map="cpu",
    torch_dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
    trust_remote_code=True,
).eval()

tokenizer = AutoTokenizer.from_pretrained(EMU_CHAT_HUB, trust_remote_code=True)
image_processor = AutoImageProcessor.from_pretrained(
    VQ_HUB, trust_remote_code=True
)
image_tokenizer = AutoModel.from_pretrained(
    VQ_HUB, device_map="cpu", trust_remote_code=True
).eval()

print(device)
image_tokenizer.to(device)

processor = Emu3Processor(
    image_processor, image_tokenizer, tokenizer
)

def generate_image(prompt):
    POSITIVE_PROMPT = " masterpiece, film grained, best quality."
    NEGATIVE_PROMPT = (
        "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, "
        "fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, "
        "signature, watermark, username, blurry."
    )

    classifier_free_guidance = 3.0
    full_prompt = prompt + POSITIVE_PROMPT

    kwargs = dict(
        mode="G",
        ratio="1:1",
        image_area=gen_model.config.image_area,
        return_tensors="pt",
    )
    pos_inputs = processor(text=full_prompt, **kwargs)
    neg_inputs = processor(text=NEGATIVE_PROMPT, **kwargs)

    # Prepare hyperparameters
    GENERATION_CONFIG = GenerationConfig(
        use_cache=True,
        eos_token_id=gen_model.config.eos_token_id,
        pad_token_id=gen_model.config.pad_token_id,
        max_new_tokens=40960,
        do_sample=True,
        top_k=2048,
    )

    torch.cuda.empty_cache()
    gen_model.to(device)

    h, w = pos_inputs.image_size[0]
    constrained_fn = processor.build_prefix_constrained_fn(h, w)
    logits_processor = LogitsProcessorList(
        [
            UnbatchedClassifierFreeGuidanceLogitsProcessor(
                classifier_free_guidance,
                gen_model,
                unconditional_ids=neg_inputs.input_ids.to(device),
            ),
            PrefixConstrainedLogitsProcessor(
                constrained_fn,
                num_beams=1,
            ),
        ]
    )

    # Generate
    outputs = gen_model.generate(
        pos_inputs.input_ids.to(device),
        generation_config=GENERATION_CONFIG,
        logits_processor=logits_processor,
    )

    mm_list = processor.decode(outputs[0])
    result = None
    for idx, im in enumerate(mm_list):
        if isinstance(im, Image.Image):
            result = im
            break

    gen_model.cpu()
    torch.cuda.empty_cache()
    
    return result

def vision_language_understanding(image, text):
    inputs = processor(
        text=text,
        image=image,
        mode="U",
        padding_side="left",
        padding="longest",
        return_tensors="pt",
    )

    # Prepare hyperparameters
    GENERATION_CONFIG = GenerationConfig(
        pad_token_id=tokenizer.pad_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id,
        max_new_tokens=320,
    )

    torch.cuda.empty_cache()
    chat_model.to(device)

    # Generate
    outputs = chat_model.generate(
        inputs.input_ids.to(device),
        generation_config=GENERATION_CONFIG,
        max_new_tokens=320,
    )

    outputs = outputs[:, inputs.input_ids.shape[-1] :]
    response = processor.batch_decode(outputs, skip_special_tokens=True)[0]

    chat_model.cpu()
    torch.cuda.empty_cache()
    
    return response

    
def chat(history, user_input, user_image):
    if user_image is not None:
        # Use Emu3-Chat for vision-language understanding
        response = vision_language_understanding(user_image, user_input)
        # Append the user input and response to the history
        history = history + [(image2str(user_image) + "<br>" + user_input, response)]
    else:
        # Use Emu3-Gen for image generation
        generated_image = generate_image(user_input)
        if generated_image is not None:
            # Append the user input and generated image to the history
            history = history + [(user_input, image2str(generated_image))]
        else:
            # If image generation failed, respond with an error message
            history = history + [
                (user_input, "Sorry, I could not generate an image.")
            ]

    return history, history, gr.update(value=None)

    
def clear_input():
    return gr.update(value="")

    
with gr.Blocks() as demo:
    gr.Markdown("# Emu3 Chatbot Demo")
    gr.Markdown(
        "This is a chatbot demo for image generation and vision-language understanding using Emu3 models."
    )
    gr.Markdown(
        "Please provide <b>only text input</b> for image generation (<b>\~600s</b>) and <b>both image and text</b> for vision-language understanding (<b>\~20s</b>)"
    )

    state = gr.State([])
    with gr.Row():
        with gr.Column(scale=0.2):
            user_input = gr.Textbox(
                show_label=False, placeholder="Type your message here...", lines=10, container=False,
            )
            user_image = gr.Image(
                sources="upload", type="pil", label="Upload an image (optional)"
            )
            submit_btn = gr.Button("Send")

        with gr.Column(scale=0.8):
            chatbot = gr.Chatbot(height=800)

    submit_btn.click(
        chat,
        inputs=[state, user_input, user_image],
        outputs=[chatbot, state, user_image],
    ).then(fn=clear_input, inputs=[], outputs=user_input, queue=False)
    user_input.submit(
        chat,
        inputs=[state, user_input, user_image],
        outputs=[chatbot, state, user_image],
    ).then(fn=clear_input, inputs=[], outputs=user_input, queue=False)

demo.launch(max_threads=1).queue()