|
import subprocess |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from PIL import Image |
|
import gradio as gr |
|
from transformers import ( |
|
AutoTokenizer, |
|
AutoModelForCausalLM, |
|
AutoImageProcessor, |
|
AutoModel, |
|
) |
|
from transformers.generation.configuration_utils import GenerationConfig |
|
from transformers.generation import ( |
|
LogitsProcessorList, |
|
PrefixConstrainedLogitsProcessor, |
|
UnbatchedClassifierFreeGuidanceLogitsProcessor, |
|
) |
|
import torch |
|
from emu3.mllm.processing_emu3 import Emu3Processor |
|
|
|
import io |
|
import base64 |
|
|
|
def image2str(image): |
|
buf = io.BytesIO() |
|
image.save(buf, format="PNG") |
|
i_str = base64.b64encode(buf.getvalue()).decode() |
|
return f'<div style="float:left"><img src="data:image/png;base64, {i_str}"></div>' |
|
|
|
print(gr.__version__) |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
EMU_GEN_HUB = "BAAI/Emu3-Gen" |
|
EMU_CHAT_HUB = "BAAI/Emu3-Chat" |
|
VQ_HUB = "BAAI/Emu3-VisionTokenizer" |
|
|
|
|
|
|
|
|
|
|
|
gen_model = AutoModelForCausalLM.from_pretrained( |
|
EMU_GEN_HUB, |
|
device_map="cpu", |
|
torch_dtype=torch.bfloat16, |
|
attn_implementation="flash_attention_2", |
|
trust_remote_code=True, |
|
).eval() |
|
|
|
chat_model = AutoModelForCausalLM.from_pretrained( |
|
EMU_CHAT_HUB, |
|
device_map="cpu", |
|
torch_dtype=torch.bfloat16, |
|
attn_implementation="flash_attention_2", |
|
trust_remote_code=True, |
|
).eval() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(EMU_CHAT_HUB, trust_remote_code=True) |
|
image_processor = AutoImageProcessor.from_pretrained( |
|
VQ_HUB, trust_remote_code=True |
|
) |
|
image_tokenizer = AutoModel.from_pretrained( |
|
VQ_HUB, device_map="cpu", trust_remote_code=True |
|
).eval() |
|
|
|
print(device) |
|
image_tokenizer.to(device) |
|
|
|
processor = Emu3Processor( |
|
image_processor, image_tokenizer, tokenizer |
|
) |
|
|
|
def generate_image(prompt): |
|
POSITIVE_PROMPT = " masterpiece, film grained, best quality." |
|
NEGATIVE_PROMPT = ( |
|
"lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, " |
|
"fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, " |
|
"signature, watermark, username, blurry." |
|
) |
|
|
|
classifier_free_guidance = 3.0 |
|
full_prompt = prompt + POSITIVE_PROMPT |
|
|
|
kwargs = dict( |
|
mode="G", |
|
ratio="1:1", |
|
image_area=gen_model.config.image_area, |
|
return_tensors="pt", |
|
) |
|
pos_inputs = processor(text=full_prompt, **kwargs) |
|
neg_inputs = processor(text=NEGATIVE_PROMPT, **kwargs) |
|
|
|
|
|
GENERATION_CONFIG = GenerationConfig( |
|
use_cache=True, |
|
eos_token_id=gen_model.config.eos_token_id, |
|
pad_token_id=gen_model.config.pad_token_id, |
|
max_new_tokens=40960, |
|
do_sample=True, |
|
top_k=2048, |
|
) |
|
|
|
torch.cuda.empty_cache() |
|
gen_model.to(device) |
|
|
|
h, w = pos_inputs.image_size[0] |
|
constrained_fn = processor.build_prefix_constrained_fn(h, w) |
|
logits_processor = LogitsProcessorList( |
|
[ |
|
UnbatchedClassifierFreeGuidanceLogitsProcessor( |
|
classifier_free_guidance, |
|
gen_model, |
|
unconditional_ids=neg_inputs.input_ids.to(device), |
|
), |
|
PrefixConstrainedLogitsProcessor( |
|
constrained_fn, |
|
num_beams=1, |
|
), |
|
] |
|
) |
|
|
|
|
|
outputs = gen_model.generate( |
|
pos_inputs.input_ids.to(device), |
|
generation_config=GENERATION_CONFIG, |
|
logits_processor=logits_processor, |
|
) |
|
|
|
mm_list = processor.decode(outputs[0]) |
|
result = None |
|
for idx, im in enumerate(mm_list): |
|
if isinstance(im, Image.Image): |
|
result = im |
|
break |
|
|
|
gen_model.cpu() |
|
torch.cuda.empty_cache() |
|
|
|
return result |
|
|
|
def vision_language_understanding(image, text): |
|
inputs = processor( |
|
text=text, |
|
image=image, |
|
mode="U", |
|
padding_side="left", |
|
padding="longest", |
|
return_tensors="pt", |
|
) |
|
|
|
|
|
GENERATION_CONFIG = GenerationConfig( |
|
pad_token_id=tokenizer.pad_token_id, |
|
bos_token_id=tokenizer.bos_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
max_new_tokens=320, |
|
) |
|
|
|
torch.cuda.empty_cache() |
|
chat_model.to(device) |
|
|
|
|
|
outputs = chat_model.generate( |
|
inputs.input_ids.to(device), |
|
generation_config=GENERATION_CONFIG, |
|
max_new_tokens=320, |
|
) |
|
|
|
outputs = outputs[:, inputs.input_ids.shape[-1] :] |
|
response = processor.batch_decode(outputs, skip_special_tokens=True)[0] |
|
|
|
chat_model.cpu() |
|
torch.cuda.empty_cache() |
|
|
|
return response |
|
|
|
|
|
def chat(history, user_input, user_image): |
|
if user_image is not None: |
|
|
|
response = vision_language_understanding(user_image, user_input) |
|
|
|
history = history + [(image2str(user_image) + "<br>" + user_input, response)] |
|
else: |
|
|
|
generated_image = generate_image(user_input) |
|
if generated_image is not None: |
|
|
|
history = history + [(user_input, image2str(generated_image))] |
|
else: |
|
|
|
history = history + [ |
|
(user_input, "Sorry, I could not generate an image.") |
|
] |
|
|
|
return history, history, gr.update(value=None) |
|
|
|
|
|
def clear_input(): |
|
return gr.update(value="") |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Emu3 Chatbot Demo") |
|
gr.Markdown( |
|
"This is a chatbot demo for image generation and vision-language understanding using Emu3 models." |
|
) |
|
gr.Markdown( |
|
"Please pass <b>only text input</b> for image generation (~20s) and <b>both image and text</b> for vision-language understanding (~600s)" |
|
) |
|
|
|
state = gr.State([]) |
|
with gr.Row(): |
|
with gr.Column(scale=0.2): |
|
user_input = gr.Textbox( |
|
show_label=False, placeholder="Type your message here...", lines=15, container=False, |
|
) |
|
user_image = gr.Image( |
|
sources="upload", type="pil", label="Upload an image (optional)" |
|
) |
|
submit_btn = gr.Button("Send") |
|
|
|
with gr.Column(scale=0.8): |
|
chatbot = gr.Chatbot(height=800) |
|
|
|
submit_btn.click( |
|
chat, |
|
inputs=[state, user_input, user_image], |
|
outputs=[chatbot, state, user_image], |
|
).then(fn=clear_input, inputs=[], outputs=user_input) |
|
user_input.submit( |
|
chat, |
|
inputs=[state, user_input, user_image], |
|
outputs=[chatbot, state, user_image], |
|
).then(fn=clear_input, inputs=[], outputs=user_input) |
|
|
|
demo.launch(max_threads=1).queue() |
|
|