Spaces:
Paused
Paused
File size: 13,288 Bytes
9d3cb0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import torch
import torch.nn as nn
from .utils.modules import PatchEmbed, TimestepEmbedder
from .utils.modules import PE_wrapper, RMSNorm
from .blocks import DiTBlock, JointDiTBlock
from .utils.span_mask import compute_mask_indices
class DiTControlNetEmbed(nn.Module):
def __init__(self, in_chans, out_chans, blocks,
cond_mask=False, cond_mask_prob=None,
cond_mask_ratio=None, cond_mask_span=None):
super().__init__()
self.conv_in = nn.Conv1d(in_chans, blocks[0], kernel_size=1)
self.cond_mask = cond_mask
if self.cond_mask:
self.mask_embed = nn.Parameter(torch.zeros((blocks[0])))
self.mask_prob = cond_mask_prob
self.mask_ratio = cond_mask_ratio
self.mask_span = cond_mask_span
blocks[0] = blocks[0] + 1
conv_blocks = []
for i in range(len(blocks) - 1):
channel_in = blocks[i]
channel_out = blocks[i + 1]
block = nn.Sequential(
nn.Conv1d(channel_in, channel_in, kernel_size=3, padding=1),
nn.SiLU(),
nn.Conv1d(channel_in, channel_out, kernel_size=3, padding=1, stride=2),
nn.SiLU(),)
conv_blocks.append(block)
self.blocks = nn.ModuleList(conv_blocks)
self.conv_out = nn.Conv1d(blocks[-1], out_chans, kernel_size=1)
nn.init.zeros_(self.conv_out.weight)
nn.init.zeros_(self.conv_out.bias)
def random_masking(self, gt, mask_ratios, mae_mask_infer=None):
B, D, L = gt.shape
if mae_mask_infer is None:
# mask = torch.rand(B, L).to(gt.device) < mask_ratios.unsqueeze(1)
mask_ratios = mask_ratios.cpu().numpy()
mask = compute_mask_indices(shape=[B, L],
padding_mask=None,
mask_prob=mask_ratios,
mask_length=self.mask_span,
mask_type="static",
mask_other=0.0,
min_masks=1,
no_overlap=False,
min_space=0,)
# only apply mask to some batches
mask_batch = torch.rand(B) < self.mask_prob
mask[~mask_batch] = False
mask = mask.unsqueeze(1).expand_as(gt)
else:
mask = mae_mask_infer
mask = mask.expand_as(gt)
gt[mask] = self.mask_embed.view(1, D, 1).expand_as(gt)[mask].type_as(gt)
return gt, mask.type_as(gt)
def forward(self, conditioning, cond_mask_infer=None):
embedding = self.conv_in(conditioning)
if self.cond_mask:
B, D, L = embedding.shape
if not self.training and cond_mask_infer is None:
cond_mask_infer = torch.zeros_like(embedding).bool()
mask_ratios = torch.FloatTensor(B).uniform_(*self.mask_ratio).to(embedding.device)
embedding, cond_mask = self.random_masking(embedding, mask_ratios, cond_mask_infer)
embedding = torch.cat([embedding, cond_mask[:, 0:1, :]], dim=1)
for block in self.blocks:
embedding = block(embedding)
embedding = self.conv_out(embedding)
# B, L, C
embedding = embedding.transpose(1, 2).contiguous()
return embedding
class DiTControlNet(nn.Module):
def __init__(self,
img_size=(224, 224), patch_size=16, in_chans=3,
input_type='2d', out_chans=None,
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.,
qkv_bias=False, qk_scale=None, qk_norm=None,
act_layer='gelu', norm_layer='layernorm',
context_norm=False,
use_checkpoint=False,
# time fusion ada or token
time_fusion='token',
ada_lora_rank=None, ada_lora_alpha=None,
cls_dim=None,
# max length is only used for concat
context_dim=768, context_fusion='concat',
context_max_length=128, context_pe_method='sinu',
pe_method='abs', rope_mode='none',
use_conv=True,
skip=True, skip_norm=True,
# controlnet configs
cond_in=None, cond_blocks=None,
cond_mask=False, cond_mask_prob=None,
cond_mask_ratio=None, cond_mask_span=None,
**kwargs):
super().__init__()
self.num_features = self.embed_dim = embed_dim
# input
self.in_chans = in_chans
self.input_type = input_type
if self.input_type == '2d':
num_patches = (img_size[0] // patch_size) * (img_size[1] // patch_size)
elif self.input_type == '1d':
num_patches = img_size // patch_size
self.patch_embed = PatchEmbed(patch_size=patch_size, in_chans=in_chans,
embed_dim=embed_dim, input_type=input_type)
out_chans = in_chans if out_chans is None else out_chans
self.out_chans = out_chans
# position embedding
self.rope = rope_mode
self.x_pe = PE_wrapper(dim=embed_dim, method=pe_method,
length=num_patches)
print(f'x position embedding: {pe_method}')
print(f'rope mode: {self.rope}')
# time embed
self.time_embed = TimestepEmbedder(embed_dim)
self.time_fusion = time_fusion
self.use_adanorm = False
# cls embed
if cls_dim is not None:
self.cls_embed = nn.Sequential(
nn.Linear(cls_dim, embed_dim, bias=True),
nn.SiLU(),
nn.Linear(embed_dim, embed_dim, bias=True),)
else:
self.cls_embed = None
# time fusion
if time_fusion == 'token':
# put token at the beginning of sequence
self.extras = 2 if self.cls_embed else 1
self.time_pe = PE_wrapper(dim=embed_dim, method='abs', length=self.extras)
elif time_fusion in ['ada', 'ada_single', 'ada_lora', 'ada_lora_bias']:
self.use_adanorm = True
# aviod repetitive silu for each adaln block
self.time_act = nn.SiLU()
self.extras = 0
if time_fusion in ['ada_single', 'ada_lora', 'ada_lora_bias']:
# shared adaln
self.time_ada = nn.Linear(embed_dim, 6 * embed_dim, bias=True)
else:
self.time_ada = None
else:
raise NotImplementedError
print(f'time fusion mode: {self.time_fusion}')
# context
# use a simple projection
self.use_context = False
self.context_cross = False
self.context_max_length = context_max_length
self.context_fusion = 'none'
if context_dim is not None:
self.use_context = True
self.context_embed = nn.Sequential(
nn.Linear(context_dim, embed_dim, bias=True),
nn.SiLU(),
nn.Linear(embed_dim, embed_dim, bias=True),)
self.context_fusion = context_fusion
if context_fusion == 'concat' or context_fusion == 'joint':
self.extras += context_max_length
self.context_pe = PE_wrapper(dim=embed_dim,
method=context_pe_method,
length=context_max_length)
# no cross attention layers
context_dim = None
elif context_fusion == 'cross':
self.context_pe = PE_wrapper(dim=embed_dim,
method=context_pe_method,
length=context_max_length)
self.context_cross = True
context_dim = embed_dim
else:
raise NotImplementedError
print(f'context fusion mode: {context_fusion}')
print(f'context position embedding: {context_pe_method}')
if self.context_fusion == 'joint':
Block = JointDiTBlock
else:
Block = DiTBlock
# norm layers
if norm_layer == 'layernorm':
norm_layer = nn.LayerNorm
elif norm_layer == 'rmsnorm':
norm_layer = RMSNorm
else:
raise NotImplementedError
self.in_blocks = nn.ModuleList([
Block(
dim=embed_dim, context_dim=context_dim, num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale, qk_norm=qk_norm,
act_layer=act_layer, norm_layer=norm_layer,
time_fusion=time_fusion,
ada_lora_rank=ada_lora_rank, ada_lora_alpha=ada_lora_alpha,
skip=False, skip_norm=False,
rope_mode=self.rope,
context_norm=context_norm,
use_checkpoint=use_checkpoint)
for _ in range(depth // 2)])
self.controlnet_pre = DiTControlNetEmbed(in_chans=cond_in, out_chans=embed_dim,
blocks=cond_blocks,
cond_mask=cond_mask,
cond_mask_prob=cond_mask_prob,
cond_mask_ratio=cond_mask_ratio,
cond_mask_span=cond_mask_span)
controlnet_zero_blocks = []
for i in range(depth // 2):
block = nn.Linear(embed_dim, embed_dim)
nn.init.zeros_(block.weight)
nn.init.zeros_(block.bias)
controlnet_zero_blocks.append(block)
self.controlnet_zero_blocks = nn.ModuleList(controlnet_zero_blocks)
print('ControlNet ready \n')
def set_trainable(self):
for param in self.parameters():
param.requires_grad = False
# only train input_proj, blocks, and output_proj
for module_name in ['controlnet_pre', 'in_blocks', 'controlnet_zero_blocks']:
module = getattr(self, module_name, None)
if module is not None:
for param in module.parameters():
param.requires_grad = True
module.train()
else:
print(f'\n!!!warning missing trainable blocks: {module_name}!!!\n')
def forward(self, x, timesteps, context,
x_mask=None, context_mask=None,
cls_token=None,
condition=None, cond_mask_infer=None,
conditioning_scale=1.0):
# make it compatible with int time step during inference
if timesteps.dim() == 0:
timesteps = timesteps.expand(x.shape[0]).to(x.device, dtype=torch.long)
x = self.patch_embed(x)
# add condition to x
condition = self.controlnet_pre(condition)
x = x + condition
x = self.x_pe(x)
B, L, D = x.shape
if self.use_context:
context_token = self.context_embed(context)
context_token = self.context_pe(context_token)
if self.context_fusion == 'concat' or self.context_fusion == 'joint':
x, x_mask = self._concat_x_context(x=x, context=context_token,
x_mask=x_mask,
context_mask=context_mask)
context_token, context_mask = None, None
else:
context_token, context_mask = None, None
time_token = self.time_embed(timesteps)
if self.cls_embed:
cls_token = self.cls_embed(cls_token)
time_ada = None
if self.use_adanorm:
if self.cls_embed:
time_token = time_token + cls_token
time_token = self.time_act(time_token)
if self.time_ada is not None:
time_ada = self.time_ada(time_token)
else:
time_token = time_token.unsqueeze(dim=1)
if self.cls_embed:
cls_token = cls_token.unsqueeze(dim=1)
time_token = torch.cat([time_token, cls_token], dim=1)
time_token = self.time_pe(time_token)
x = torch.cat((time_token, x), dim=1)
if x_mask is not None:
x_mask = torch.cat(
[torch.ones(B, time_token.shape[1], device=x_mask.device).bool(),
x_mask], dim=1)
time_token = None
skips = []
for blk in self.in_blocks:
x = blk(x=x, time_token=time_token, time_ada=time_ada,
skip=None, context=context_token,
x_mask=x_mask, context_mask=context_mask,
extras=self.extras)
skips.append(x)
controlnet_skips = []
for skip, controlnet_block in zip(skips, self.controlnet_zero_blocks):
controlnet_skips.append(controlnet_block(skip) * conditioning_scale)
return controlnet_skips |