File size: 13,288 Bytes
9d3cb0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import torch
import torch.nn as nn

from .utils.modules import PatchEmbed, TimestepEmbedder
from .utils.modules import PE_wrapper, RMSNorm
from .blocks import DiTBlock, JointDiTBlock
from .utils.span_mask import compute_mask_indices


class DiTControlNetEmbed(nn.Module):
    def __init__(self, in_chans, out_chans, blocks,
                 cond_mask=False, cond_mask_prob=None,
                 cond_mask_ratio=None, cond_mask_span=None):
        super().__init__()
        self.conv_in = nn.Conv1d(in_chans, blocks[0], kernel_size=1)

        self.cond_mask = cond_mask
        if self.cond_mask:
            self.mask_embed = nn.Parameter(torch.zeros((blocks[0])))
            self.mask_prob = cond_mask_prob
            self.mask_ratio = cond_mask_ratio
            self.mask_span = cond_mask_span
            blocks[0] = blocks[0] + 1

        conv_blocks = []
        for i in range(len(blocks) - 1):
            channel_in = blocks[i]
            channel_out = blocks[i + 1]
            block = nn.Sequential(
                nn.Conv1d(channel_in, channel_in, kernel_size=3, padding=1),
                nn.SiLU(),
                nn.Conv1d(channel_in, channel_out, kernel_size=3, padding=1, stride=2),
                nn.SiLU(),)
            conv_blocks.append(block)
            self.blocks = nn.ModuleList(conv_blocks)

        self.conv_out = nn.Conv1d(blocks[-1], out_chans, kernel_size=1)
        nn.init.zeros_(self.conv_out.weight)
        nn.init.zeros_(self.conv_out.bias)

    def random_masking(self, gt, mask_ratios, mae_mask_infer=None):
        B, D, L = gt.shape
        if mae_mask_infer is None:
            # mask = torch.rand(B, L).to(gt.device) < mask_ratios.unsqueeze(1)
            mask_ratios = mask_ratios.cpu().numpy()
            mask = compute_mask_indices(shape=[B, L],
                                        padding_mask=None,
                                        mask_prob=mask_ratios,
                                        mask_length=self.mask_span,
                                        mask_type="static",
                                        mask_other=0.0,
                                        min_masks=1,
                                        no_overlap=False,
                                        min_space=0,)
            # only apply mask to some batches
            mask_batch = torch.rand(B) < self.mask_prob
            mask[~mask_batch] = False
            mask = mask.unsqueeze(1).expand_as(gt)
        else:
            mask = mae_mask_infer
            mask = mask.expand_as(gt)
        gt[mask] = self.mask_embed.view(1, D, 1).expand_as(gt)[mask].type_as(gt)
        return gt, mask.type_as(gt)

    def forward(self, conditioning, cond_mask_infer=None):
        embedding = self.conv_in(conditioning)

        if self.cond_mask:
            B, D, L = embedding.shape
            if not self.training and cond_mask_infer is None:
                cond_mask_infer = torch.zeros_like(embedding).bool()
            mask_ratios = torch.FloatTensor(B).uniform_(*self.mask_ratio).to(embedding.device)
            embedding, cond_mask = self.random_masking(embedding, mask_ratios, cond_mask_infer)
            embedding = torch.cat([embedding, cond_mask[:, 0:1, :]], dim=1)

        for block in self.blocks:
            embedding = block(embedding)

        embedding = self.conv_out(embedding)

        # B, L, C
        embedding = embedding.transpose(1, 2).contiguous()

        return embedding


class DiTControlNet(nn.Module):
    def __init__(self,
                 img_size=(224, 224), patch_size=16, in_chans=3,
                 input_type='2d', out_chans=None,
                 embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.,
                 qkv_bias=False, qk_scale=None, qk_norm=None,
                 act_layer='gelu', norm_layer='layernorm',
                 context_norm=False,
                 use_checkpoint=False,
                 # time fusion ada or token
                 time_fusion='token',
                 ada_lora_rank=None, ada_lora_alpha=None,
                 cls_dim=None,
                 # max length is only used for concat
                 context_dim=768, context_fusion='concat',
                 context_max_length=128, context_pe_method='sinu',
                 pe_method='abs', rope_mode='none',
                 use_conv=True,
                 skip=True, skip_norm=True,
                 # controlnet configs
                 cond_in=None, cond_blocks=None, 
                 cond_mask=False, cond_mask_prob=None,
                 cond_mask_ratio=None, cond_mask_span=None,
                 **kwargs):
        super().__init__()
        self.num_features = self.embed_dim = embed_dim
        # input
        self.in_chans = in_chans
        self.input_type = input_type
        if self.input_type == '2d':
            num_patches = (img_size[0] // patch_size) * (img_size[1] // patch_size)
        elif self.input_type == '1d':
            num_patches = img_size // patch_size
        self.patch_embed = PatchEmbed(patch_size=patch_size, in_chans=in_chans,
                                      embed_dim=embed_dim, input_type=input_type)
        out_chans = in_chans if out_chans is None else out_chans
        self.out_chans = out_chans

        # position embedding
        self.rope = rope_mode
        self.x_pe = PE_wrapper(dim=embed_dim, method=pe_method,
                               length=num_patches)

        print(f'x position embedding: {pe_method}')
        print(f'rope mode: {self.rope}')

        # time embed
        self.time_embed = TimestepEmbedder(embed_dim)
        self.time_fusion = time_fusion
        self.use_adanorm = False

        # cls embed
        if cls_dim is not None:
            self.cls_embed = nn.Sequential(
                nn.Linear(cls_dim, embed_dim, bias=True),
                nn.SiLU(),
                nn.Linear(embed_dim, embed_dim, bias=True),)
        else:
            self.cls_embed = None

        # time fusion
        if time_fusion == 'token':
            # put token at the beginning of sequence
            self.extras = 2 if self.cls_embed else 1
            self.time_pe = PE_wrapper(dim=embed_dim, method='abs', length=self.extras)
        elif time_fusion in ['ada', 'ada_single', 'ada_lora', 'ada_lora_bias']:
            self.use_adanorm = True
            # aviod  repetitive silu for each adaln block
            self.time_act = nn.SiLU()
            self.extras = 0
            if time_fusion in ['ada_single', 'ada_lora', 'ada_lora_bias']:
                # shared adaln
                self.time_ada = nn.Linear(embed_dim, 6 * embed_dim, bias=True)
            else:
                self.time_ada = None
        else:
            raise NotImplementedError
        print(f'time fusion mode: {self.time_fusion}')

        # context
        # use a simple projection
        self.use_context = False
        self.context_cross = False
        self.context_max_length = context_max_length
        self.context_fusion = 'none'
        if context_dim is not None:
            self.use_context = True
            self.context_embed = nn.Sequential(
                nn.Linear(context_dim, embed_dim, bias=True),
                nn.SiLU(),
                nn.Linear(embed_dim, embed_dim, bias=True),)
            self.context_fusion = context_fusion
            if context_fusion == 'concat' or context_fusion == 'joint':
                self.extras += context_max_length
                self.context_pe = PE_wrapper(dim=embed_dim,
                                             method=context_pe_method,
                                             length=context_max_length)
                # no cross attention layers
                context_dim = None
            elif context_fusion == 'cross':
                self.context_pe = PE_wrapper(dim=embed_dim,
                                             method=context_pe_method,
                                             length=context_max_length)
                self.context_cross = True
                context_dim = embed_dim
            else:
                raise NotImplementedError
        print(f'context fusion mode: {context_fusion}')
        print(f'context position embedding: {context_pe_method}')

        if self.context_fusion == 'joint':
            Block = JointDiTBlock
        else:
            Block = DiTBlock

        # norm layers
        if norm_layer == 'layernorm':
            norm_layer = nn.LayerNorm
        elif norm_layer == 'rmsnorm':
            norm_layer = RMSNorm
        else:
            raise NotImplementedError

        self.in_blocks = nn.ModuleList([
            Block(
                dim=embed_dim, context_dim=context_dim, num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias, qk_scale=qk_scale, qk_norm=qk_norm,
                act_layer=act_layer, norm_layer=norm_layer,
                time_fusion=time_fusion,
                ada_lora_rank=ada_lora_rank, ada_lora_alpha=ada_lora_alpha,
                skip=False, skip_norm=False,
                rope_mode=self.rope,
                context_norm=context_norm,
                use_checkpoint=use_checkpoint)
            for _ in range(depth // 2)])

        self.controlnet_pre = DiTControlNetEmbed(in_chans=cond_in, out_chans=embed_dim,
                                                 blocks=cond_blocks,
                                                 cond_mask=cond_mask, 
                                                 cond_mask_prob=cond_mask_prob,
                                                 cond_mask_ratio=cond_mask_ratio,
                                                 cond_mask_span=cond_mask_span)

        controlnet_zero_blocks = []
        for i in range(depth // 2):
            block = nn.Linear(embed_dim, embed_dim)
            nn.init.zeros_(block.weight)
            nn.init.zeros_(block.bias)
            controlnet_zero_blocks.append(block)
        self.controlnet_zero_blocks = nn.ModuleList(controlnet_zero_blocks)

        print('ControlNet ready \n')

    def set_trainable(self):
        for param in self.parameters():
            param.requires_grad = False

        # only train input_proj, blocks, and output_proj
        for module_name in ['controlnet_pre', 'in_blocks', 'controlnet_zero_blocks']:
            module = getattr(self, module_name, None)
            if module is not None:
                for param in module.parameters():
                    param.requires_grad = True
                module.train()
            else:
                print(f'\n!!!warning missing trainable blocks: {module_name}!!!\n')

    def forward(self, x, timesteps, context,
                x_mask=None, context_mask=None,
                cls_token=None,
                condition=None, cond_mask_infer=None,
                conditioning_scale=1.0):
        # make it compatible with int time step during inference
        if timesteps.dim() == 0:
            timesteps = timesteps.expand(x.shape[0]).to(x.device, dtype=torch.long)

        x = self.patch_embed(x)
        # add condition to x
        condition = self.controlnet_pre(condition)
        x = x + condition
        x = self.x_pe(x)

        B, L, D = x.shape

        if self.use_context:
            context_token = self.context_embed(context)
            context_token = self.context_pe(context_token)
            if self.context_fusion == 'concat' or self.context_fusion == 'joint':
                x, x_mask = self._concat_x_context(x=x, context=context_token,
                                                   x_mask=x_mask,
                                                   context_mask=context_mask)
                context_token, context_mask = None, None
        else:
            context_token, context_mask = None, None

        time_token = self.time_embed(timesteps)
        if self.cls_embed:
            cls_token = self.cls_embed(cls_token)
        time_ada = None
        if self.use_adanorm:
            if self.cls_embed:
                time_token = time_token + cls_token
            time_token = self.time_act(time_token)
            if self.time_ada is not None:
                time_ada = self.time_ada(time_token)
        else:
            time_token = time_token.unsqueeze(dim=1)
            if self.cls_embed:
                cls_token = cls_token.unsqueeze(dim=1)
                time_token = torch.cat([time_token, cls_token], dim=1)
            time_token = self.time_pe(time_token)
            x = torch.cat((time_token, x), dim=1)
            if x_mask is not None:
                x_mask = torch.cat(
                    [torch.ones(B, time_token.shape[1], device=x_mask.device).bool(),
                     x_mask], dim=1)
            time_token = None

        skips = []
        for blk in self.in_blocks:
            x = blk(x=x, time_token=time_token, time_ada=time_ada,
                    skip=None, context=context_token,
                    x_mask=x_mask, context_mask=context_mask,
                    extras=self.extras)
            skips.append(x)

        controlnet_skips = []
        for skip, controlnet_block in zip(skips, self.controlnet_zero_blocks):
            controlnet_skips.append(controlnet_block(skip) * conditioning_scale)

        return controlnet_skips