File size: 17,916 Bytes
9d3cb0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
from pathlib import Path
from typing import Callable
from typing import Dict
from typing import List
from typing import Union

import numpy as np
from torch.utils.data import SequentialSampler
from torch.utils.data.distributed import DistributedSampler

from ..core import AudioSignal
from ..core import util


class AudioLoader:
    """Loads audio endlessly from a list of audio sources
    containing paths to audio files. Audio sources can be
    folders full of audio files (which are found via file
    extension) or by providing a CSV file which contains paths
    to audio files.

    Parameters
    ----------
    sources : List[str], optional
        Sources containing folders, or CSVs with
        paths to audio files, by default None
    weights : List[float], optional
        Weights to sample audio files from each source, by default None
    relative_path : str, optional
        Path audio should be loaded relative to, by default ""
    transform : Callable, optional
        Transform to instantiate alongside audio sample,
        by default None
    ext : List[str]
        List of extensions to find audio within each source by. Can
        also be a file name (e.g. "vocals.wav"). by default
        ``['.wav', '.flac', '.mp3', '.mp4']``.
    shuffle: bool
        Whether to shuffle the files within the dataloader. Defaults to True.
    shuffle_state: int
        State to use to seed the shuffle of the files.
    """

    def __init__(
        self,
        sources: List[str] = None,
        weights: List[float] = None,
        transform: Callable = None,
        relative_path: str = "",
        ext: List[str] = util.AUDIO_EXTENSIONS,
        shuffle: bool = True,
        shuffle_state: int = 0,
    ):
        self.audio_lists = util.read_sources(
            sources, relative_path=relative_path, ext=ext
        )

        self.audio_indices = [
            (src_idx, item_idx)
            for src_idx, src in enumerate(self.audio_lists)
            for item_idx in range(len(src))
        ]
        if shuffle:
            state = util.random_state(shuffle_state)
            state.shuffle(self.audio_indices)

        self.sources = sources
        self.weights = weights
        self.transform = transform

    def __call__(
        self,
        state,
        sample_rate: int,
        duration: float,
        loudness_cutoff: float = -40,
        num_channels: int = 1,
        offset: float = None,
        source_idx: int = None,
        item_idx: int = None,
        global_idx: int = None,
    ):
        if source_idx is not None and item_idx is not None:
            try:
                audio_info = self.audio_lists[source_idx][item_idx]
            except:
                audio_info = {"path": "none"}
        elif global_idx is not None:
            source_idx, item_idx = self.audio_indices[
                global_idx % len(self.audio_indices)
            ]
            audio_info = self.audio_lists[source_idx][item_idx]
        else:
            audio_info, source_idx, item_idx = util.choose_from_list_of_lists(
                state, self.audio_lists, p=self.weights
            )

        path = audio_info["path"]
        signal = AudioSignal.zeros(duration, sample_rate, num_channels)

        if path != "none":
            if offset is None:
                signal = AudioSignal.salient_excerpt(
                    path,
                    duration=duration,
                    state=state,
                    loudness_cutoff=loudness_cutoff,
                )
            else:
                signal = AudioSignal(
                    path,
                    offset=offset,
                    duration=duration,
                )

        if num_channels == 1:
            signal = signal.to_mono()
        signal = signal.resample(sample_rate)

        if signal.duration < duration:
            signal = signal.zero_pad_to(int(duration * sample_rate))

        for k, v in audio_info.items():
            signal.metadata[k] = v

        item = {
            "signal": signal,
            "source_idx": source_idx,
            "item_idx": item_idx,
            "source": str(self.sources[source_idx]),
            "path": str(path),
        }
        if self.transform is not None:
            item["transform_args"] = self.transform.instantiate(state, signal=signal)
        return item


def default_matcher(x, y):
    return Path(x).parent == Path(y).parent


def align_lists(lists, matcher: Callable = default_matcher):
    longest_list = lists[np.argmax([len(l) for l in lists])]
    for i, x in enumerate(longest_list):
        for l in lists:
            if i >= len(l):
                l.append({"path": "none"})
            elif not matcher(l[i]["path"], x["path"]):
                l.insert(i, {"path": "none"})
    return lists


class AudioDataset:
    """Loads audio from multiple loaders (with associated transforms)
    for a specified number of samples. Excerpts are drawn randomly
    of the specified duration, above a specified loudness threshold
    and are resampled on the fly to the desired sample rate
    (if it is different from the audio source sample rate).

    This takes either a single AudioLoader object,
    a dictionary of AudioLoader objects, or a dictionary of AudioLoader
    objects. Each AudioLoader is called by the dataset, and the
    result is placed in the output dictionary. A transform can also be
    specified for the entire dataset, rather than for each specific
    loader. This transform can be applied to the output of all the
    loaders if desired.

    AudioLoader objects can be specified as aligned, which means the
    loaders correspond to multitrack audio (e.g. a vocals, bass,
    drums, and other loader for multitrack music mixtures).


    Parameters
    ----------
    loaders : Union[AudioLoader, List[AudioLoader], Dict[str, AudioLoader]]
        AudioLoaders to sample audio from.
    sample_rate : int
        Desired sample rate.
    n_examples : int, optional
        Number of examples (length of dataset), by default 1000
    duration : float, optional
        Duration of audio samples, by default 0.5
    loudness_cutoff : float, optional
        Loudness cutoff threshold for audio samples, by default -40
    num_channels : int, optional
        Number of channels in output audio, by default 1
    transform : Callable, optional
        Transform to instantiate alongside each dataset item, by default None
    aligned : bool, optional
        Whether the loaders should be sampled in an aligned manner (e.g. same
        offset, duration, and matched file name), by default False
    shuffle_loaders : bool, optional
        Whether to shuffle the loaders before sampling from them, by default False
    matcher : Callable
        How to match files from adjacent audio lists (e.g. for a multitrack audio loader),
        by default uses the parent directory of each file.
    without_replacement : bool
        Whether to choose files with or without replacement, by default True.


    Examples
    --------
    >>> from audiotools.data.datasets import AudioLoader
    >>> from audiotools.data.datasets import AudioDataset
    >>> from audiotools import transforms as tfm
    >>> import numpy as np
    >>>
    >>> loaders = [
    >>>     AudioLoader(
    >>>         sources=[f"tests/audio/spk"],
    >>>         transform=tfm.Equalizer(),
    >>>         ext=["wav"],
    >>>     )
    >>>     for i in range(5)
    >>> ]
    >>>
    >>> dataset = AudioDataset(
    >>>     loaders = loaders,
    >>>     sample_rate = 44100,
    >>>     duration = 1.0,
    >>>     transform = tfm.RescaleAudio(),
    >>> )
    >>>
    >>> item = dataset[np.random.randint(len(dataset))]
    >>>
    >>> for i in range(len(loaders)):
    >>>     item[i]["signal"] = loaders[i].transform(
    >>>         item[i]["signal"], **item[i]["transform_args"]
    >>>     )
    >>>     item[i]["signal"].widget(i)
    >>>
    >>> mix = sum([item[i]["signal"] for i in range(len(loaders))])
    >>> mix = dataset.transform(mix, **item["transform_args"])
    >>> mix.widget("mix")

    Below is an example of how one could load MUSDB multitrack data:

    >>> import audiotools as at
    >>> from pathlib import Path
    >>> from audiotools import transforms as tfm
    >>> import numpy as np
    >>> import torch
    >>>
    >>> def build_dataset(
    >>>     sample_rate: int = 44100,
    >>>     duration: float = 5.0,
    >>>     musdb_path: str = "~/.data/musdb/",
    >>> ):
    >>>     musdb_path = Path(musdb_path).expanduser()
    >>>     loaders = {
    >>>         src: at.datasets.AudioLoader(
    >>>             sources=[musdb_path],
    >>>             transform=tfm.Compose(
    >>>                 tfm.VolumeNorm(("uniform", -20, -10)),
    >>>                 tfm.Silence(prob=0.1),
    >>>             ),
    >>>             ext=[f"{src}.wav"],
    >>>         )
    >>>         for src in ["vocals", "bass", "drums", "other"]
    >>>     }
    >>>
    >>>     dataset = at.datasets.AudioDataset(
    >>>         loaders=loaders,
    >>>         sample_rate=sample_rate,
    >>>         duration=duration,
    >>>         num_channels=1,
    >>>         aligned=True,
    >>>         transform=tfm.RescaleAudio(),
    >>>         shuffle_loaders=True,
    >>>     )
    >>>     return dataset, list(loaders.keys())
    >>>
    >>> train_data, sources = build_dataset()
    >>> dataloader = torch.utils.data.DataLoader(
    >>>     train_data,
    >>>     batch_size=16,
    >>>     num_workers=0,
    >>>     collate_fn=train_data.collate,
    >>> )
    >>> batch = next(iter(dataloader))
    >>>
    >>> for k in sources:
    >>>     src = batch[k]
    >>>     src["transformed"] = train_data.loaders[k].transform(
    >>>         src["signal"].clone(), **src["transform_args"]
    >>>     )
    >>>
    >>> mixture = sum(batch[k]["transformed"] for k in sources)
    >>> mixture = train_data.transform(mixture, **batch["transform_args"])
    >>>
    >>> # Say a model takes the mix and gives back (n_batch, n_src, n_time).
    >>> # Construct the targets:
    >>> targets = at.AudioSignal.batch([batch[k]["transformed"] for k in sources], dim=1)

    Similarly, here's example code for loading Slakh data:

    >>> import audiotools as at
    >>> from pathlib import Path
    >>> from audiotools import transforms as tfm
    >>> import numpy as np
    >>> import torch
    >>> import glob
    >>>
    >>> def build_dataset(
    >>>     sample_rate: int = 16000,
    >>>     duration: float = 10.0,
    >>>     slakh_path: str = "~/.data/slakh/",
    >>> ):
    >>>     slakh_path = Path(slakh_path).expanduser()
    >>>
    >>>     # Find the max number of sources in Slakh
    >>>     src_names = [x.name for x in list(slakh_path.glob("**/*.wav"))  if "S" in str(x.name)]
    >>>     n_sources = len(list(set(src_names)))
    >>>
    >>>     loaders = {
    >>>         f"S{i:02d}": at.datasets.AudioLoader(
    >>>             sources=[slakh_path],
    >>>             transform=tfm.Compose(
    >>>                 tfm.VolumeNorm(("uniform", -20, -10)),
    >>>                 tfm.Silence(prob=0.1),
    >>>             ),
    >>>             ext=[f"S{i:02d}.wav"],
    >>>         )
    >>>         for i in range(n_sources)
    >>>     }
    >>>     dataset = at.datasets.AudioDataset(
    >>>         loaders=loaders,
    >>>         sample_rate=sample_rate,
    >>>         duration=duration,
    >>>         num_channels=1,
    >>>         aligned=True,
    >>>         transform=tfm.RescaleAudio(),
    >>>         shuffle_loaders=False,
    >>>     )
    >>>
    >>>     return dataset, list(loaders.keys())
    >>>
    >>> train_data, sources = build_dataset()
    >>> dataloader = torch.utils.data.DataLoader(
    >>>     train_data,
    >>>     batch_size=16,
    >>>     num_workers=0,
    >>>     collate_fn=train_data.collate,
    >>> )
    >>> batch = next(iter(dataloader))
    >>>
    >>> for k in sources:
    >>>     src = batch[k]
    >>>     src["transformed"] = train_data.loaders[k].transform(
    >>>         src["signal"].clone(), **src["transform_args"]
    >>>     )
    >>>
    >>> mixture = sum(batch[k]["transformed"] for k in sources)
    >>> mixture = train_data.transform(mixture, **batch["transform_args"])

    """

    def __init__(
        self,
        loaders: Union[AudioLoader, List[AudioLoader], Dict[str, AudioLoader]],
        sample_rate: int,
        n_examples: int = 1000,
        duration: float = 0.5,
        offset: float = None,
        loudness_cutoff: float = -40,
        num_channels: int = 1,
        transform: Callable = None,
        aligned: bool = False,
        shuffle_loaders: bool = False,
        matcher: Callable = default_matcher,
        without_replacement: bool = True,
    ):
        # Internally we convert loaders to a dictionary
        if isinstance(loaders, list):
            loaders = {i: l for i, l in enumerate(loaders)}
        elif isinstance(loaders, AudioLoader):
            loaders = {0: loaders}

        self.loaders = loaders
        self.loudness_cutoff = loudness_cutoff
        self.num_channels = num_channels

        self.length = n_examples
        self.transform = transform
        self.sample_rate = sample_rate
        self.duration = duration
        self.offset = offset
        self.aligned = aligned
        self.shuffle_loaders = shuffle_loaders
        self.without_replacement = without_replacement

        if aligned:
            loaders_list = list(loaders.values())
            for i in range(len(loaders_list[0].audio_lists)):
                input_lists = [l.audio_lists[i] for l in loaders_list]
                # Alignment happens in-place
                align_lists(input_lists, matcher)

    def __getitem__(self, idx):
        state = util.random_state(idx)
        offset = None if self.offset is None else self.offset
        item = {}

        keys = list(self.loaders.keys())
        if self.shuffle_loaders:
            state.shuffle(keys)

        loader_kwargs = {
            "state": state,
            "sample_rate": self.sample_rate,
            "duration": self.duration,
            "loudness_cutoff": self.loudness_cutoff,
            "num_channels": self.num_channels,
            "global_idx": idx if self.without_replacement else None,
        }

        # Draw item from first loader
        loader = self.loaders[keys[0]]
        item[keys[0]] = loader(**loader_kwargs)

        for key in keys[1:]:
            loader = self.loaders[key]
            if self.aligned:
                # Path mapper takes the current loader + everything
                # returned by the first loader.
                offset = item[keys[0]]["signal"].metadata["offset"]
                loader_kwargs.update(
                    {
                        "offset": offset,
                        "source_idx": item[keys[0]]["source_idx"],
                        "item_idx": item[keys[0]]["item_idx"],
                    }
                )
            item[key] = loader(**loader_kwargs)

        # Sort dictionary back into original order
        keys = list(self.loaders.keys())
        item = {k: item[k] for k in keys}

        item["idx"] = idx
        if self.transform is not None:
            item["transform_args"] = self.transform.instantiate(
                state=state, signal=item[keys[0]]["signal"]
            )

        # If there's only one loader, pop it up
        # to the main dictionary, instead of keeping it
        # nested.
        if len(keys) == 1:
            item.update(item.pop(keys[0]))

        return item

    def __len__(self):
        return self.length

    @staticmethod
    def collate(list_of_dicts: Union[list, dict], n_splits: int = None):
        """Collates items drawn from this dataset. Uses
        :py:func:`audiotools.core.util.collate`.

        Parameters
        ----------
        list_of_dicts : typing.Union[list, dict]
            Data drawn from each item.
        n_splits : int
            Number of splits to make when creating the batches (split into
            sub-batches). Useful for things like gradient accumulation.

        Returns
        -------
        dict
            Dictionary of batched data.
        """
        return util.collate(list_of_dicts, n_splits=n_splits)


class ConcatDataset(AudioDataset):
    def __init__(self, datasets: list):
        self.datasets = datasets

    def __len__(self):
        return sum([len(d) for d in self.datasets])

    def __getitem__(self, idx):
        dataset = self.datasets[idx % len(self.datasets)]
        return dataset[idx // len(self.datasets)]


class ResumableDistributedSampler(DistributedSampler):  # pragma: no cover
    """Distributed sampler that can be resumed from a given start index."""

    def __init__(self, dataset, start_idx: int = None, **kwargs):
        super().__init__(dataset, **kwargs)
        # Start index, allows to resume an experiment at the index it was
        self.start_idx = start_idx // self.num_replicas if start_idx is not None else 0

    def __iter__(self):
        for i, idx in enumerate(super().__iter__()):
            if i >= self.start_idx:
                yield idx
        self.start_idx = 0  # set the index back to 0 so for the next epoch


class ResumableSequentialSampler(SequentialSampler):  # pragma: no cover
    """Sequential sampler that can be resumed from a given start index."""

    def __init__(self, dataset, start_idx: int = None, **kwargs):
        super().__init__(dataset, **kwargs)
        # Start index, allows to resume an experiment at the index it was
        self.start_idx = start_idx if start_idx is not None else 0

    def __iter__(self):
        for i, idx in enumerate(super().__iter__()):
            if i >= self.start_idx:
                yield idx
        self.start_idx = 0  # set the index back to 0 so for the next epoch