Spaces:
Paused
Paused
File size: 52,373 Bytes
9d3cb0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 |
import copy
import functools
import hashlib
import math
import pathlib
import tempfile
import typing
import warnings
from collections import namedtuple
from pathlib import Path
import julius
import numpy as np
import soundfile
import torch
from . import util
from .display import DisplayMixin
from .dsp import DSPMixin
from .effects import EffectMixin
from .effects import ImpulseResponseMixin
from .ffmpeg import FFMPEGMixin
from .loudness import LoudnessMixin
from .playback import PlayMixin
from .whisper import WhisperMixin
STFTParams = namedtuple(
"STFTParams",
["window_length", "hop_length", "window_type", "match_stride", "padding_type"],
)
"""
STFTParams object is a container that holds STFT parameters - window_length,
hop_length, and window_type. Not all parameters need to be specified. Ones that
are not specified will be inferred by the AudioSignal parameters.
Parameters
----------
window_length : int, optional
Window length of STFT, by default ``0.032 * self.sample_rate``.
hop_length : int, optional
Hop length of STFT, by default ``window_length // 4``.
window_type : str, optional
Type of window to use, by default ``sqrt\_hann``.
match_stride : bool, optional
Whether to match the stride of convolutional layers, by default False
padding_type : str, optional
Type of padding to use, by default 'reflect'
"""
STFTParams.__new__.__defaults__ = (None, None, None, None, None)
class AudioSignal(
EffectMixin,
LoudnessMixin,
PlayMixin,
ImpulseResponseMixin,
DSPMixin,
DisplayMixin,
FFMPEGMixin,
WhisperMixin,
):
"""This is the core object of this library. Audio is always
loaded into an AudioSignal, which then enables all the features
of this library, including audio augmentations, I/O, playback,
and more.
The structure of this object is that the base functionality
is defined in ``core/audio_signal.py``, while extensions to
that functionality are defined in the other ``core/*.py``
files. For example, all the display-based functionality
(e.g. plot spectrograms, waveforms, write to tensorboard)
are in ``core/display.py``.
Parameters
----------
audio_path_or_array : typing.Union[torch.Tensor, str, Path, np.ndarray]
Object to create AudioSignal from. Can be a tensor, numpy array,
or a path to a file. The file is always reshaped to
sample_rate : int, optional
Sample rate of the audio. If different from underlying file, resampling is
performed. If passing in an array or tensor, this must be defined,
by default None
stft_params : STFTParams, optional
Parameters of STFT to use. , by default None
offset : float, optional
Offset in seconds to read from file, by default 0
duration : float, optional
Duration in seconds to read from file, by default None
device : str, optional
Device to load audio onto, by default None
Examples
--------
Loading an AudioSignal from an array, at a sample rate of
44100.
>>> signal = AudioSignal(torch.randn(5*44100), 44100)
Note, the signal is reshaped to have a batch size, and one
audio channel:
>>> print(signal.shape)
(1, 1, 44100)
You can treat AudioSignals like tensors, and many of the same
functions you might use on tensors are defined for AudioSignals
as well:
>>> signal.to("cuda")
>>> signal.cuda()
>>> signal.clone()
>>> signal.detach()
Indexing AudioSignals returns an AudioSignal:
>>> signal[..., 3*44100:4*44100]
The above signal is 1 second long, and is also an AudioSignal.
"""
def __init__(
self,
audio_path_or_array: typing.Union[torch.Tensor, str, Path, np.ndarray],
sample_rate: int = None,
stft_params: STFTParams = None,
offset: float = 0,
duration: float = None,
device: str = None,
):
audio_path = None
audio_array = None
if isinstance(audio_path_or_array, str):
audio_path = audio_path_or_array
elif isinstance(audio_path_or_array, pathlib.Path):
audio_path = audio_path_or_array
elif isinstance(audio_path_or_array, np.ndarray):
audio_array = audio_path_or_array
elif torch.is_tensor(audio_path_or_array):
audio_array = audio_path_or_array
else:
raise ValueError(
"audio_path_or_array must be either a Path, "
"string, numpy array, or torch Tensor!"
)
self.path_to_file = None
self.audio_data = None
self.sources = None # List of AudioSignal objects.
self.stft_data = None
if audio_path is not None:
self.load_from_file(
audio_path, offset=offset, duration=duration, device=device
)
elif audio_array is not None:
assert sample_rate is not None, "Must set sample rate!"
self.load_from_array(audio_array, sample_rate, device=device)
self.window = None
self.stft_params = stft_params
self.metadata = {
"offset": offset,
"duration": duration,
}
@property
def path_to_input_file(
self,
):
"""
Path to input file, if it exists.
Alias to ``path_to_file`` for backwards compatibility
"""
return self.path_to_file
@classmethod
def excerpt(
cls,
audio_path: typing.Union[str, Path],
offset: float = None,
duration: float = None,
state: typing.Union[np.random.RandomState, int] = None,
**kwargs,
):
"""Randomly draw an excerpt of ``duration`` seconds from an
audio file specified at ``audio_path``, between ``offset`` seconds
and end of file. ``state`` can be used to seed the random draw.
Parameters
----------
audio_path : typing.Union[str, Path]
Path to audio file to grab excerpt from.
offset : float, optional
Lower bound for the start time, in seconds drawn from
the file, by default None.
duration : float, optional
Duration of excerpt, in seconds, by default None
state : typing.Union[np.random.RandomState, int], optional
RandomState or seed of random state, by default None
Returns
-------
AudioSignal
AudioSignal containing excerpt.
Examples
--------
>>> signal = AudioSignal.excerpt("path/to/audio", duration=5)
"""
info = util.info(audio_path)
total_duration = info.duration
state = util.random_state(state)
lower_bound = 0 if offset is None else offset
upper_bound = max(total_duration - duration, 0)
offset = state.uniform(lower_bound, upper_bound)
signal = cls(audio_path, offset=offset, duration=duration, **kwargs)
signal.metadata["offset"] = offset
signal.metadata["duration"] = duration
return signal
@classmethod
def salient_excerpt(
cls,
audio_path: typing.Union[str, Path],
loudness_cutoff: float = None,
num_tries: int = 8,
state: typing.Union[np.random.RandomState, int] = None,
**kwargs,
):
"""Similar to AudioSignal.excerpt, except it extracts excerpts only
if they are above a specified loudness threshold, which is computed via
a fast LUFS routine.
Parameters
----------
audio_path : typing.Union[str, Path]
Path to audio file to grab excerpt from.
loudness_cutoff : float, optional
Loudness threshold in dB. Typical values are ``-40, -60``,
etc, by default None
num_tries : int, optional
Number of tries to grab an excerpt above the threshold
before giving up, by default 8.
state : typing.Union[np.random.RandomState, int], optional
RandomState or seed of random state, by default None
kwargs : dict
Keyword arguments to AudioSignal.excerpt
Returns
-------
AudioSignal
AudioSignal containing excerpt.
.. warning::
if ``num_tries`` is set to None, ``salient_excerpt`` may try forever, which can
result in an infinite loop if ``audio_path`` does not have
any loud enough excerpts.
Examples
--------
>>> signal = AudioSignal.salient_excerpt(
"path/to/audio",
loudness_cutoff=-40,
duration=5
)
"""
state = util.random_state(state)
if loudness_cutoff is None:
excerpt = cls.excerpt(audio_path, state=state, **kwargs)
else:
loudness = -np.inf
num_try = 0
while loudness <= loudness_cutoff:
excerpt = cls.excerpt(audio_path, state=state, **kwargs)
loudness = excerpt.loudness()
num_try += 1
if num_tries is not None and num_try >= num_tries:
break
return excerpt
@classmethod
def zeros(
cls,
duration: float,
sample_rate: int,
num_channels: int = 1,
batch_size: int = 1,
**kwargs,
):
"""Helper function create an AudioSignal of all zeros.
Parameters
----------
duration : float
Duration of AudioSignal
sample_rate : int
Sample rate of AudioSignal
num_channels : int, optional
Number of channels, by default 1
batch_size : int, optional
Batch size, by default 1
Returns
-------
AudioSignal
AudioSignal containing all zeros.
Examples
--------
Generate 5 seconds of all zeros at a sample rate of 44100.
>>> signal = AudioSignal.zeros(5.0, 44100)
"""
n_samples = int(duration * sample_rate)
return cls(
torch.zeros(batch_size, num_channels, n_samples), sample_rate, **kwargs
)
@classmethod
def wave(
cls,
frequency: float,
duration: float,
sample_rate: int,
num_channels: int = 1,
shape: str = "sine",
**kwargs,
):
"""
Generate a waveform of a given frequency and shape.
Parameters
----------
frequency : float
Frequency of the waveform
duration : float
Duration of the waveform
sample_rate : int
Sample rate of the waveform
num_channels : int, optional
Number of channels, by default 1
shape : str, optional
Shape of the waveform, by default "saw"
One of "sawtooth", "square", "sine", "triangle"
kwargs : dict
Keyword arguments to AudioSignal
"""
n_samples = int(duration * sample_rate)
t = torch.linspace(0, duration, n_samples)
if shape == "sawtooth":
from scipy.signal import sawtooth
wave_data = sawtooth(2 * np.pi * frequency * t, 0.5)
elif shape == "square":
from scipy.signal import square
wave_data = square(2 * np.pi * frequency * t)
elif shape == "sine":
wave_data = np.sin(2 * np.pi * frequency * t)
elif shape == "triangle":
from scipy.signal import sawtooth
# frequency is doubled by the abs call, so omit the 2 in 2pi
wave_data = sawtooth(np.pi * frequency * t, 0.5)
wave_data = -np.abs(wave_data) * 2 + 1
else:
raise ValueError(f"Invalid shape {shape}")
wave_data = torch.tensor(wave_data, dtype=torch.float32)
wave_data = wave_data.unsqueeze(0).unsqueeze(0).repeat(1, num_channels, 1)
return cls(wave_data, sample_rate, **kwargs)
@classmethod
def batch(
cls,
audio_signals: list,
pad_signals: bool = False,
truncate_signals: bool = False,
resample: bool = False,
dim: int = 0,
):
"""Creates a batched AudioSignal from a list of AudioSignals.
Parameters
----------
audio_signals : list[AudioSignal]
List of AudioSignal objects
pad_signals : bool, optional
Whether to pad signals to length of the maximum length
AudioSignal in the list, by default False
truncate_signals : bool, optional
Whether to truncate signals to length of shortest length
AudioSignal in the list, by default False
resample : bool, optional
Whether to resample AudioSignal to the sample rate of
the first AudioSignal in the list, by default False
dim : int, optional
Dimension along which to batch the signals.
Returns
-------
AudioSignal
Batched AudioSignal.
Raises
------
RuntimeError
If not all AudioSignals are the same sample rate, and
``resample=False``, an error is raised.
RuntimeError
If not all AudioSignals are the same the length, and
both ``pad_signals=False`` and ``truncate_signals=False``,
an error is raised.
Examples
--------
Batching a bunch of random signals:
>>> signal_list = [AudioSignal(torch.randn(44100), 44100) for _ in range(10)]
>>> signal = AudioSignal.batch(signal_list)
>>> print(signal.shape)
(10, 1, 44100)
"""
signal_lengths = [x.signal_length for x in audio_signals]
sample_rates = [x.sample_rate for x in audio_signals]
if len(set(sample_rates)) != 1:
if resample:
for x in audio_signals:
x.resample(sample_rates[0])
else:
raise RuntimeError(
f"Not all signals had the same sample rate! Got {sample_rates}. "
f"All signals must have the same sample rate, or resample must be True. "
)
if len(set(signal_lengths)) != 1:
if pad_signals:
max_length = max(signal_lengths)
for x in audio_signals:
pad_len = max_length - x.signal_length
x.zero_pad(0, pad_len)
elif truncate_signals:
min_length = min(signal_lengths)
for x in audio_signals:
x.truncate_samples(min_length)
else:
raise RuntimeError(
f"Not all signals had the same length! Got {signal_lengths}. "
f"All signals must be the same length, or pad_signals/truncate_signals "
f"must be True. "
)
# Concatenate along the specified dimension (default 0)
audio_data = torch.cat([x.audio_data for x in audio_signals], dim=dim)
audio_paths = [x.path_to_file for x in audio_signals]
batched_signal = cls(
audio_data,
sample_rate=audio_signals[0].sample_rate,
)
batched_signal.path_to_file = audio_paths
return batched_signal
# I/O
def load_from_file(
self,
audio_path: typing.Union[str, Path],
offset: float,
duration: float,
device: str = "cpu",
):
"""Loads data from file. Used internally when AudioSignal
is instantiated with a path to a file.
Parameters
----------
audio_path : typing.Union[str, Path]
Path to file
offset : float
Offset in seconds
duration : float
Duration in seconds
device : str, optional
Device to put AudioSignal on, by default "cpu"
Returns
-------
AudioSignal
AudioSignal loaded from file
"""
import librosa
data, sample_rate = librosa.load(
audio_path,
offset=offset,
duration=duration,
sr=None,
mono=False,
)
data = util.ensure_tensor(data)
if data.shape[-1] == 0:
raise RuntimeError(
f"Audio file {audio_path} with offset {offset} and duration {duration} is empty!"
)
if data.ndim < 2:
data = data.unsqueeze(0)
if data.ndim < 3:
data = data.unsqueeze(0)
self.audio_data = data
self.original_signal_length = self.signal_length
self.sample_rate = sample_rate
self.path_to_file = audio_path
return self.to(device)
def load_from_array(
self,
audio_array: typing.Union[torch.Tensor, np.ndarray],
sample_rate: int,
device: str = "cpu",
):
"""Loads data from array, reshaping it to be exactly 3
dimensions. Used internally when AudioSignal is called
with a tensor or an array.
Parameters
----------
audio_array : typing.Union[torch.Tensor, np.ndarray]
Array/tensor of audio of samples.
sample_rate : int
Sample rate of audio
device : str, optional
Device to move audio onto, by default "cpu"
Returns
-------
AudioSignal
AudioSignal loaded from array
"""
audio_data = util.ensure_tensor(audio_array)
if audio_data.dtype == torch.double:
audio_data = audio_data.float()
if audio_data.ndim < 2:
audio_data = audio_data.unsqueeze(0)
if audio_data.ndim < 3:
audio_data = audio_data.unsqueeze(0)
self.audio_data = audio_data
self.original_signal_length = self.signal_length
self.sample_rate = sample_rate
return self.to(device)
def write(self, audio_path: typing.Union[str, Path]):
"""Writes audio to a file. Only writes the audio
that is in the very first item of the batch. To write other items
in the batch, index the signal along the batch dimension
before writing. After writing, the signal's ``path_to_file``
attribute is updated to the new path.
Parameters
----------
audio_path : typing.Union[str, Path]
Path to write audio to.
Returns
-------
AudioSignal
Returns original AudioSignal, so you can use this in a fluent
interface.
Examples
--------
Creating and writing a signal to disk:
>>> signal = AudioSignal(torch.randn(10, 1, 44100), 44100)
>>> signal.write("/tmp/out.wav")
Writing a different element of the batch:
>>> signal[5].write("/tmp/out.wav")
Using this in a fluent interface:
>>> signal.write("/tmp/original.wav").low_pass(4000).write("/tmp/lowpass.wav")
"""
if self.audio_data[0].abs().max() > 1:
warnings.warn("Audio amplitude > 1 clipped when saving")
soundfile.write(str(audio_path), self.audio_data[0].numpy().T, self.sample_rate)
self.path_to_file = audio_path
return self
def deepcopy(self):
"""Copies the signal and all of its attributes.
Returns
-------
AudioSignal
Deep copy of the audio signal.
"""
return copy.deepcopy(self)
def copy(self):
"""Shallow copy of signal.
Returns
-------
AudioSignal
Shallow copy of the audio signal.
"""
return copy.copy(self)
def clone(self):
"""Clones all tensors contained in the AudioSignal,
and returns a copy of the signal with everything
cloned. Useful when using AudioSignal within autograd
computation graphs.
Relevant attributes are the stft data, the audio data,
and the loudness of the file.
Returns
-------
AudioSignal
Clone of AudioSignal.
"""
clone = type(self)(
self.audio_data.clone(),
self.sample_rate,
stft_params=self.stft_params,
)
if self.stft_data is not None:
clone.stft_data = self.stft_data.clone()
if self._loudness is not None:
clone._loudness = self._loudness.clone()
clone.path_to_file = copy.deepcopy(self.path_to_file)
clone.metadata = copy.deepcopy(self.metadata)
return clone
def detach(self):
"""Detaches tensors contained in AudioSignal.
Relevant attributes are the stft data, the audio data,
and the loudness of the file.
Returns
-------
AudioSignal
Same signal, but with all tensors detached.
"""
if self._loudness is not None:
self._loudness = self._loudness.detach()
if self.stft_data is not None:
self.stft_data = self.stft_data.detach()
self.audio_data = self.audio_data.detach()
return self
def hash(self):
"""Writes the audio data to a temporary file, and then
hashes it using hashlib. Useful for creating a file
name based on the audio content.
Returns
-------
str
Hash of audio data.
Examples
--------
Creating a signal, and writing it to a unique file name:
>>> signal = AudioSignal(torch.randn(44100), 44100)
>>> hash = signal.hash()
>>> signal.write(f"{hash}.wav")
"""
with tempfile.NamedTemporaryFile(suffix=".wav") as f:
self.write(f.name)
h = hashlib.sha256()
b = bytearray(128 * 1024)
mv = memoryview(b)
with open(f.name, "rb", buffering=0) as f:
for n in iter(lambda: f.readinto(mv), 0):
h.update(mv[:n])
file_hash = h.hexdigest()
return file_hash
# Signal operations
def to_mono(self):
"""Converts audio data to mono audio, by taking the mean
along the channels dimension.
Returns
-------
AudioSignal
AudioSignal with mean of channels.
"""
self.audio_data = self.audio_data.mean(1, keepdim=True)
return self
def resample(self, sample_rate: int):
"""Resamples the audio, using sinc interpolation. This works on both
cpu and gpu, and is much faster on gpu.
Parameters
----------
sample_rate : int
Sample rate to resample to.
Returns
-------
AudioSignal
Resampled AudioSignal
"""
if sample_rate == self.sample_rate:
return self
self.audio_data = julius.resample_frac(
self.audio_data, self.sample_rate, sample_rate
)
self.sample_rate = sample_rate
return self
# Tensor operations
def to(self, device: str):
"""Moves all tensors contained in signal to the specified device.
Parameters
----------
device : str
Device to move AudioSignal onto. Typical values are
"cuda", "cpu", or "cuda:n" to specify the nth gpu.
Returns
-------
AudioSignal
AudioSignal with all tensors moved to specified device.
"""
if self._loudness is not None:
self._loudness = self._loudness.to(device)
if self.stft_data is not None:
self.stft_data = self.stft_data.to(device)
if self.audio_data is not None:
self.audio_data = self.audio_data.to(device)
return self
def float(self):
"""Calls ``.float()`` on ``self.audio_data``.
Returns
-------
AudioSignal
"""
self.audio_data = self.audio_data.float()
return self
def cpu(self):
"""Moves AudioSignal to cpu.
Returns
-------
AudioSignal
"""
return self.to("cpu")
def cuda(self): # pragma: no cover
"""Moves AudioSignal to cuda.
Returns
-------
AudioSignal
"""
return self.to("cuda")
def numpy(self):
"""Detaches ``self.audio_data``, moves to cpu, and converts to numpy.
Returns
-------
np.ndarray
Audio data as a numpy array.
"""
return self.audio_data.detach().cpu().numpy()
def zero_pad(self, before: int, after: int):
"""Zero pads the audio_data tensor before and after.
Parameters
----------
before : int
How many zeros to prepend to audio.
after : int
How many zeros to append to audio.
Returns
-------
AudioSignal
AudioSignal with padding applied.
"""
self.audio_data = torch.nn.functional.pad(self.audio_data, (before, after))
return self
def zero_pad_to(self, length: int, mode: str = "after"):
"""Pad with zeros to a specified length, either before or after
the audio data.
Parameters
----------
length : int
Length to pad to
mode : str, optional
Whether to prepend or append zeros to signal, by default "after"
Returns
-------
AudioSignal
AudioSignal with padding applied.
"""
if mode == "before":
self.zero_pad(max(length - self.signal_length, 0), 0)
elif mode == "after":
self.zero_pad(0, max(length - self.signal_length, 0))
return self
def trim(self, before: int, after: int):
"""Trims the audio_data tensor before and after.
Parameters
----------
before : int
How many samples to trim from beginning.
after : int
How many samples to trim from end.
Returns
-------
AudioSignal
AudioSignal with trimming applied.
"""
if after == 0:
self.audio_data = self.audio_data[..., before:]
else:
self.audio_data = self.audio_data[..., before:-after]
return self
def truncate_samples(self, length_in_samples: int):
"""Truncate signal to specified length.
Parameters
----------
length_in_samples : int
Truncate to this many samples.
Returns
-------
AudioSignal
AudioSignal with truncation applied.
"""
self.audio_data = self.audio_data[..., :length_in_samples]
return self
@property
def device(self):
"""Get device that AudioSignal is on.
Returns
-------
torch.device
Device that AudioSignal is on.
"""
if self.audio_data is not None:
device = self.audio_data.device
elif self.stft_data is not None:
device = self.stft_data.device
return device
# Properties
@property
def audio_data(self):
"""Returns the audio data tensor in the object.
Audio data is always of the shape
(batch_size, num_channels, num_samples). If value has less
than 3 dims (e.g. is (num_channels, num_samples)), then it will
be reshaped to (1, num_channels, num_samples) - a batch size of 1.
Parameters
----------
data : typing.Union[torch.Tensor, np.ndarray]
Audio data to set.
Returns
-------
torch.Tensor
Audio samples.
"""
return self._audio_data
@audio_data.setter
def audio_data(self, data: typing.Union[torch.Tensor, np.ndarray]):
if data is not None:
assert torch.is_tensor(data), "audio_data should be torch.Tensor"
assert data.ndim == 3, "audio_data should be 3-dim (B, C, T)"
self._audio_data = data
# Old loudness value not guaranteed to be right, reset it.
self._loudness = None
return
# alias for audio_data
samples = audio_data
@property
def stft_data(self):
"""Returns the STFT data inside the signal. Shape is
(batch, channels, frequencies, time).
Returns
-------
torch.Tensor
Complex spectrogram data.
"""
return self._stft_data
@stft_data.setter
def stft_data(self, data: typing.Union[torch.Tensor, np.ndarray]):
if data is not None:
assert torch.is_tensor(data) and torch.is_complex(data)
if self.stft_data is not None and self.stft_data.shape != data.shape:
warnings.warn("stft_data changed shape")
self._stft_data = data
return
@property
def batch_size(self):
"""Batch size of audio signal.
Returns
-------
int
Batch size of signal.
"""
return self.audio_data.shape[0]
@property
def signal_length(self):
"""Length of audio signal.
Returns
-------
int
Length of signal in samples.
"""
return self.audio_data.shape[-1]
# alias for signal_length
length = signal_length
@property
def shape(self):
"""Shape of audio data.
Returns
-------
tuple
Shape of audio data.
"""
return self.audio_data.shape
@property
def signal_duration(self):
"""Length of audio signal in seconds.
Returns
-------
float
Length of signal in seconds.
"""
return self.signal_length / self.sample_rate
# alias for signal_duration
duration = signal_duration
@property
def num_channels(self):
"""Number of audio channels.
Returns
-------
int
Number of audio channels.
"""
return self.audio_data.shape[1]
# STFT
@staticmethod
@functools.lru_cache(None)
def get_window(window_type: str, window_length: int, device: str):
"""Wrapper around scipy.signal.get_window so one can also get the
popular sqrt-hann window. This function caches for efficiency
using functools.lru\_cache.
Parameters
----------
window_type : str
Type of window to get
window_length : int
Length of the window
device : str
Device to put window onto.
Returns
-------
torch.Tensor
Window returned by scipy.signal.get_window, as a tensor.
"""
from scipy import signal
if window_type == "average":
window = np.ones(window_length) / window_length
elif window_type == "sqrt_hann":
window = np.sqrt(signal.get_window("hann", window_length))
else:
window = signal.get_window(window_type, window_length)
window = torch.from_numpy(window).to(device).float()
return window
@property
def stft_params(self):
"""Returns STFTParams object, which can be re-used to other
AudioSignals.
This property can be set as well. If values are not defined in STFTParams,
they are inferred automatically from the signal properties. The default is to use
32ms windows, with 8ms hop length, and the square root of the hann window.
Returns
-------
STFTParams
STFT parameters for the AudioSignal.
Examples
--------
>>> stft_params = STFTParams(128, 32)
>>> signal1 = AudioSignal(torch.randn(44100), 44100, stft_params=stft_params)
>>> signal2 = AudioSignal(torch.randn(44100), 44100, stft_params=signal1.stft_params)
>>> signal1.stft_params = STFTParams() # Defaults
"""
return self._stft_params
@stft_params.setter
def stft_params(self, value: STFTParams):
default_win_len = int(2 ** (np.ceil(np.log2(0.032 * self.sample_rate))))
default_hop_len = default_win_len // 4
default_win_type = "hann"
default_match_stride = False
default_padding_type = "reflect"
default_stft_params = STFTParams(
window_length=default_win_len,
hop_length=default_hop_len,
window_type=default_win_type,
match_stride=default_match_stride,
padding_type=default_padding_type,
)._asdict()
value = value._asdict() if value else default_stft_params
for key in default_stft_params:
if value[key] is None:
value[key] = default_stft_params[key]
self._stft_params = STFTParams(**value)
self.stft_data = None
def compute_stft_padding(
self, window_length: int, hop_length: int, match_stride: bool
):
"""Compute how the STFT should be padded, based on match\_stride.
Parameters
----------
window_length : int
Window length of STFT.
hop_length : int
Hop length of STFT.
match_stride : bool
Whether or not to match stride, making the STFT have the same alignment as
convolutional layers.
Returns
-------
tuple
Amount to pad on either side of audio.
"""
length = self.signal_length
if match_stride:
assert (
hop_length == window_length // 4
), "For match_stride, hop must equal n_fft // 4"
right_pad = math.ceil(length / hop_length) * hop_length - length
pad = (window_length - hop_length) // 2
else:
right_pad = 0
pad = 0
return right_pad, pad
def stft(
self,
window_length: int = None,
hop_length: int = None,
window_type: str = None,
match_stride: bool = None,
padding_type: str = None,
):
"""Computes the short-time Fourier transform of the audio data,
with specified STFT parameters.
Parameters
----------
window_length : int, optional
Window length of STFT, by default ``0.032 * self.sample_rate``.
hop_length : int, optional
Hop length of STFT, by default ``window_length // 4``.
window_type : str, optional
Type of window to use, by default ``sqrt\_hann``.
match_stride : bool, optional
Whether to match the stride of convolutional layers, by default False
padding_type : str, optional
Type of padding to use, by default 'reflect'
Returns
-------
torch.Tensor
STFT of audio data.
Examples
--------
Compute the STFT of an AudioSignal:
>>> signal = AudioSignal(torch.randn(44100), 44100)
>>> signal.stft()
Vary the window and hop length:
>>> stft_params = [STFTParams(128, 32), STFTParams(512, 128)]
>>> for stft_param in stft_params:
>>> signal.stft_params = stft_params
>>> signal.stft()
"""
window_length = (
self.stft_params.window_length
if window_length is None
else int(window_length)
)
hop_length = (
self.stft_params.hop_length if hop_length is None else int(hop_length)
)
window_type = (
self.stft_params.window_type if window_type is None else window_type
)
match_stride = (
self.stft_params.match_stride if match_stride is None else match_stride
)
padding_type = (
self.stft_params.padding_type if padding_type is None else padding_type
)
window = self.get_window(window_type, window_length, self.audio_data.device)
window = window.to(self.audio_data.device)
audio_data = self.audio_data
right_pad, pad = self.compute_stft_padding(
window_length, hop_length, match_stride
)
audio_data = torch.nn.functional.pad(
audio_data, (pad, pad + right_pad), padding_type
)
stft_data = torch.stft(
audio_data.reshape(-1, audio_data.shape[-1]),
n_fft=window_length,
hop_length=hop_length,
window=window,
return_complex=True,
center=True,
)
_, nf, nt = stft_data.shape
stft_data = stft_data.reshape(self.batch_size, self.num_channels, nf, nt)
if match_stride:
# Drop first two and last two frames, which are added
# because of padding. Now num_frames * hop_length = num_samples.
stft_data = stft_data[..., 2:-2]
self.stft_data = stft_data
return stft_data
def istft(
self,
window_length: int = None,
hop_length: int = None,
window_type: str = None,
match_stride: bool = None,
length: int = None,
):
"""Computes inverse STFT and sets it to audio\_data.
Parameters
----------
window_length : int, optional
Window length of STFT, by default ``0.032 * self.sample_rate``.
hop_length : int, optional
Hop length of STFT, by default ``window_length // 4``.
window_type : str, optional
Type of window to use, by default ``sqrt\_hann``.
match_stride : bool, optional
Whether to match the stride of convolutional layers, by default False
length : int, optional
Original length of signal, by default None
Returns
-------
AudioSignal
AudioSignal with istft applied.
Raises
------
RuntimeError
Raises an error if stft was not called prior to istft on the signal,
or if stft_data is not set.
"""
if self.stft_data is None:
raise RuntimeError("Cannot do inverse STFT without self.stft_data!")
window_length = (
self.stft_params.window_length
if window_length is None
else int(window_length)
)
hop_length = (
self.stft_params.hop_length if hop_length is None else int(hop_length)
)
window_type = (
self.stft_params.window_type if window_type is None else window_type
)
match_stride = (
self.stft_params.match_stride if match_stride is None else match_stride
)
window = self.get_window(window_type, window_length, self.stft_data.device)
nb, nch, nf, nt = self.stft_data.shape
stft_data = self.stft_data.reshape(nb * nch, nf, nt)
right_pad, pad = self.compute_stft_padding(
window_length, hop_length, match_stride
)
if length is None:
length = self.original_signal_length
length = length + 2 * pad + right_pad
if match_stride:
# Zero-pad the STFT on either side, putting back the frames that were
# dropped in stft().
stft_data = torch.nn.functional.pad(stft_data, (2, 2))
audio_data = torch.istft(
stft_data,
n_fft=window_length,
hop_length=hop_length,
window=window,
length=length,
center=True,
)
audio_data = audio_data.reshape(nb, nch, -1)
if match_stride:
audio_data = audio_data[..., pad : -(pad + right_pad)]
self.audio_data = audio_data
return self
@staticmethod
@functools.lru_cache(None)
def get_mel_filters(
sr: int, n_fft: int, n_mels: int, fmin: float = 0.0, fmax: float = None
):
"""Create a Filterbank matrix to combine FFT bins into Mel-frequency bins.
Parameters
----------
sr : int
Sample rate of audio
n_fft : int
Number of FFT bins
n_mels : int
Number of mels
fmin : float, optional
Lowest frequency, in Hz, by default 0.0
fmax : float, optional
Highest frequency, by default None
Returns
-------
np.ndarray [shape=(n_mels, 1 + n_fft/2)]
Mel transform matrix
"""
from librosa.filters import mel as librosa_mel_fn
return librosa_mel_fn(
sr=sr,
n_fft=n_fft,
n_mels=n_mels,
fmin=fmin,
fmax=fmax,
)
def mel_spectrogram(
self, n_mels: int = 80, mel_fmin: float = 0.0, mel_fmax: float = None, **kwargs
):
"""Computes a Mel spectrogram.
Parameters
----------
n_mels : int, optional
Number of mels, by default 80
mel_fmin : float, optional
Lowest frequency, in Hz, by default 0.0
mel_fmax : float, optional
Highest frequency, by default None
kwargs : dict, optional
Keyword arguments to self.stft().
Returns
-------
torch.Tensor [shape=(batch, channels, mels, time)]
Mel spectrogram.
"""
stft = self.stft(**kwargs)
magnitude = torch.abs(stft)
nf = magnitude.shape[2]
mel_basis = self.get_mel_filters(
sr=self.sample_rate,
n_fft=2 * (nf - 1),
n_mels=n_mels,
fmin=mel_fmin,
fmax=mel_fmax,
)
mel_basis = torch.from_numpy(mel_basis).to(self.device)
mel_spectrogram = magnitude.transpose(2, -1) @ mel_basis.T
mel_spectrogram = mel_spectrogram.transpose(-1, 2)
return mel_spectrogram
@staticmethod
@functools.lru_cache(None)
def get_dct(n_mfcc: int, n_mels: int, norm: str = "ortho", device: str = None):
"""Create a discrete cosine transform (DCT) transformation matrix with shape (``n_mels``, ``n_mfcc``),
it can be normalized depending on norm. For more information about dct:
http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II
Parameters
----------
n_mfcc : int
Number of mfccs
n_mels : int
Number of mels
norm : str
Use "ortho" to get a orthogonal matrix or None, by default "ortho"
device : str, optional
Device to load the transformation matrix on, by default None
Returns
-------
torch.Tensor [shape=(n_mels, n_mfcc)] T
The dct transformation matrix.
"""
from torchaudio.functional import create_dct
return create_dct(n_mfcc, n_mels, norm).to(device)
def mfcc(
self, n_mfcc: int = 40, n_mels: int = 80, log_offset: float = 1e-6, **kwargs
):
"""Computes mel-frequency cepstral coefficients (MFCCs).
Parameters
----------
n_mfcc : int, optional
Number of mels, by default 40
n_mels : int, optional
Number of mels, by default 80
log_offset: float, optional
Small value to prevent numerical issues when trying to compute log(0), by default 1e-6
kwargs : dict, optional
Keyword arguments to self.mel_spectrogram(), note that some of them will be used for self.stft()
Returns
-------
torch.Tensor [shape=(batch, channels, mfccs, time)]
MFCCs.
"""
mel_spectrogram = self.mel_spectrogram(n_mels, **kwargs)
mel_spectrogram = torch.log(mel_spectrogram + log_offset)
dct_mat = self.get_dct(n_mfcc, n_mels, "ortho", self.device)
mfcc = mel_spectrogram.transpose(-1, -2) @ dct_mat
mfcc = mfcc.transpose(-1, -2)
return mfcc
@property
def magnitude(self):
"""Computes and returns the absolute value of the STFT, which
is the magnitude. This value can also be set to some tensor.
When set, ``self.stft_data`` is manipulated so that its magnitude
matches what this is set to, and modulated by the phase.
Returns
-------
torch.Tensor
Magnitude of STFT.
Examples
--------
>>> signal = AudioSignal(torch.randn(44100), 44100)
>>> magnitude = signal.magnitude # Computes stft if not computed
>>> magnitude[magnitude < magnitude.mean()] = 0
>>> signal.magnitude = magnitude
>>> signal.istft()
"""
if self.stft_data is None:
self.stft()
return torch.abs(self.stft_data)
@magnitude.setter
def magnitude(self, value):
self.stft_data = value * torch.exp(1j * self.phase)
return
def log_magnitude(
self, ref_value: float = 1.0, amin: float = 1e-5, top_db: float = 80.0
):
"""Computes the log-magnitude of the spectrogram.
Parameters
----------
ref_value : float, optional
The magnitude is scaled relative to ``ref``: ``20 * log10(S / ref)``.
Zeros in the output correspond to positions where ``S == ref``,
by default 1.0
amin : float, optional
Minimum threshold for ``S`` and ``ref``, by default 1e-5
top_db : float, optional
Threshold the output at ``top_db`` below the peak:
``max(10 * log10(S/ref)) - top_db``, by default -80.0
Returns
-------
torch.Tensor
Log-magnitude spectrogram
"""
magnitude = self.magnitude
amin = amin**2
log_spec = 10.0 * torch.log10(magnitude.pow(2).clamp(min=amin))
log_spec -= 10.0 * np.log10(np.maximum(amin, ref_value))
if top_db is not None:
log_spec = torch.maximum(log_spec, log_spec.max() - top_db)
return log_spec
@property
def phase(self):
"""Computes and returns the phase of the STFT.
This value can also be set to some tensor.
When set, ``self.stft_data`` is manipulated so that its phase
matches what this is set to, we original magnitudeith th.
Returns
-------
torch.Tensor
Phase of STFT.
Examples
--------
>>> signal = AudioSignal(torch.randn(44100), 44100)
>>> phase = signal.phase # Computes stft if not computed
>>> phase[phase < phase.mean()] = 0
>>> signal.phase = phase
>>> signal.istft()
"""
if self.stft_data is None:
self.stft()
return torch.angle(self.stft_data)
@phase.setter
def phase(self, value):
self.stft_data = self.magnitude * torch.exp(1j * value)
return
# Operator overloading
def __add__(self, other):
new_signal = self.clone()
new_signal.audio_data += util._get_value(other)
return new_signal
def __iadd__(self, other):
self.audio_data += util._get_value(other)
return self
def __radd__(self, other):
return self + other
def __sub__(self, other):
new_signal = self.clone()
new_signal.audio_data -= util._get_value(other)
return new_signal
def __isub__(self, other):
self.audio_data -= util._get_value(other)
return self
def __mul__(self, other):
new_signal = self.clone()
new_signal.audio_data *= util._get_value(other)
return new_signal
def __imul__(self, other):
self.audio_data *= util._get_value(other)
return self
def __rmul__(self, other):
return self * other
# Representation
def _info(self):
dur = f"{self.signal_duration:0.3f}" if self.signal_duration else "[unknown]"
info = {
"duration": f"{dur} seconds",
"batch_size": self.batch_size,
"path": self.path_to_file if self.path_to_file else "path unknown",
"sample_rate": self.sample_rate,
"num_channels": self.num_channels if self.num_channels else "[unknown]",
"audio_data.shape": self.audio_data.shape,
"stft_params": self.stft_params,
"device": self.device,
}
return info
def markdown(self):
"""Produces a markdown representation of AudioSignal, in a markdown table.
Returns
-------
str
Markdown representation of AudioSignal.
Examples
--------
>>> signal = AudioSignal(torch.randn(44100), 44100)
>>> print(signal.markdown())
| Key | Value
|---|---
| duration | 1.000 seconds |
| batch_size | 1 |
| path | path unknown |
| sample_rate | 44100 |
| num_channels | 1 |
| audio_data.shape | torch.Size([1, 1, 44100]) |
| stft_params | STFTParams(window_length=2048, hop_length=512, window_type='sqrt_hann', match_stride=False) |
| device | cpu |
"""
info = self._info()
FORMAT = "| Key | Value \n" "|---|--- \n"
for k, v in info.items():
row = f"| {k} | {v} |\n"
FORMAT += row
return FORMAT
def __str__(self):
info = self._info()
desc = ""
for k, v in info.items():
desc += f"{k}: {v}\n"
return desc
def __rich__(self):
from rich.table import Table
info = self._info()
table = Table(title=f"{self.__class__.__name__}")
table.add_column("Key", style="green")
table.add_column("Value", style="cyan")
for k, v in info.items():
table.add_row(k, str(v))
return table
# Comparison
def __eq__(self, other):
for k, v in list(self.__dict__.items()):
if torch.is_tensor(v):
if not torch.allclose(v, other.__dict__[k], atol=1e-6):
max_error = (v - other.__dict__[k]).abs().max()
print(f"Max abs error for {k}: {max_error}")
return False
return True
# Indexing
def __getitem__(self, key):
if torch.is_tensor(key) and key.ndim == 0 and key.item() is True:
assert self.batch_size == 1
audio_data = self.audio_data
_loudness = self._loudness
stft_data = self.stft_data
elif isinstance(key, (bool, int, list, slice, tuple)) or (
torch.is_tensor(key) and key.ndim <= 1
):
# Indexing only on the batch dimension.
# Then let's copy over relevant stuff.
# Future work: make this work for time-indexing
# as well, using the hop length.
audio_data = self.audio_data[key]
_loudness = self._loudness[key] if self._loudness is not None else None
stft_data = self.stft_data[key] if self.stft_data is not None else None
sources = None
copy = type(self)(audio_data, self.sample_rate, stft_params=self.stft_params)
copy._loudness = _loudness
copy._stft_data = stft_data
copy.sources = sources
return copy
def __setitem__(self, key, value):
if not isinstance(value, type(self)):
self.audio_data[key] = value
return
if torch.is_tensor(key) and key.ndim == 0 and key.item() is True:
assert self.batch_size == 1
self.audio_data = value.audio_data
self._loudness = value._loudness
self.stft_data = value.stft_data
return
elif isinstance(key, (bool, int, list, slice, tuple)) or (
torch.is_tensor(key) and key.ndim <= 1
):
if self.audio_data is not None and value.audio_data is not None:
self.audio_data[key] = value.audio_data
if self._loudness is not None and value._loudness is not None:
self._loudness[key] = value._loudness
if self.stft_data is not None and value.stft_data is not None:
self.stft_data[key] = value.stft_data
return
def __ne__(self, other):
return not self == other
|