File size: 52,373 Bytes
9d3cb0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
import copy
import functools
import hashlib
import math
import pathlib
import tempfile
import typing
import warnings
from collections import namedtuple
from pathlib import Path

import julius
import numpy as np
import soundfile
import torch

from . import util
from .display import DisplayMixin
from .dsp import DSPMixin
from .effects import EffectMixin
from .effects import ImpulseResponseMixin
from .ffmpeg import FFMPEGMixin
from .loudness import LoudnessMixin
from .playback import PlayMixin
from .whisper import WhisperMixin


STFTParams = namedtuple(
    "STFTParams",
    ["window_length", "hop_length", "window_type", "match_stride", "padding_type"],
)
"""
STFTParams object is a container that holds STFT parameters - window_length,
hop_length, and window_type. Not all parameters need to be specified. Ones that
are not specified will be inferred by the AudioSignal parameters.

Parameters
----------
window_length : int, optional
    Window length of STFT, by default ``0.032 * self.sample_rate``.
hop_length : int, optional
    Hop length of STFT, by default ``window_length // 4``.
window_type : str, optional
    Type of window to use, by default ``sqrt\_hann``.
match_stride : bool, optional
    Whether to match the stride of convolutional layers, by default False
padding_type : str, optional
    Type of padding to use, by default 'reflect'
"""
STFTParams.__new__.__defaults__ = (None, None, None, None, None)


class AudioSignal(
    EffectMixin,
    LoudnessMixin,
    PlayMixin,
    ImpulseResponseMixin,
    DSPMixin,
    DisplayMixin,
    FFMPEGMixin,
    WhisperMixin,
):
    """This is the core object of this library. Audio is always
    loaded into an AudioSignal, which then enables all the features
    of this library, including audio augmentations, I/O, playback,
    and more.

    The structure of this object is that the base functionality
    is defined in ``core/audio_signal.py``, while extensions to
    that functionality are defined in the other ``core/*.py``
    files. For example, all the display-based functionality
    (e.g. plot spectrograms, waveforms, write to tensorboard)
    are in ``core/display.py``.

    Parameters
    ----------
    audio_path_or_array : typing.Union[torch.Tensor, str, Path, np.ndarray]
        Object to create AudioSignal from. Can be a tensor, numpy array,
        or a path to a file. The file is always reshaped to
    sample_rate : int, optional
        Sample rate of the audio. If different from underlying file, resampling is
        performed. If passing in an array or tensor, this must be defined,
        by default None
    stft_params : STFTParams, optional
        Parameters of STFT to use. , by default None
    offset : float, optional
        Offset in seconds to read from file, by default 0
    duration : float, optional
        Duration in seconds to read from file, by default None
    device : str, optional
        Device to load audio onto, by default None

    Examples
    --------
    Loading an AudioSignal from an array, at a sample rate of
    44100.

    >>> signal = AudioSignal(torch.randn(5*44100), 44100)

    Note, the signal is reshaped to have a batch size, and one
    audio channel:

    >>> print(signal.shape)
    (1, 1, 44100)

    You can treat AudioSignals like tensors, and many of the same
    functions you might use on tensors are defined for AudioSignals
    as well:

    >>> signal.to("cuda")
    >>> signal.cuda()
    >>> signal.clone()
    >>> signal.detach()

    Indexing AudioSignals returns an AudioSignal:

    >>> signal[..., 3*44100:4*44100]

    The above signal is 1 second long, and is also an AudioSignal.
    """

    def __init__(
        self,
        audio_path_or_array: typing.Union[torch.Tensor, str, Path, np.ndarray],
        sample_rate: int = None,
        stft_params: STFTParams = None,
        offset: float = 0,
        duration: float = None,
        device: str = None,
    ):
        audio_path = None
        audio_array = None

        if isinstance(audio_path_or_array, str):
            audio_path = audio_path_or_array
        elif isinstance(audio_path_or_array, pathlib.Path):
            audio_path = audio_path_or_array
        elif isinstance(audio_path_or_array, np.ndarray):
            audio_array = audio_path_or_array
        elif torch.is_tensor(audio_path_or_array):
            audio_array = audio_path_or_array
        else:
            raise ValueError(
                "audio_path_or_array must be either a Path, "
                "string, numpy array, or torch Tensor!"
            )

        self.path_to_file = None

        self.audio_data = None
        self.sources = None  # List of AudioSignal objects.
        self.stft_data = None
        if audio_path is not None:
            self.load_from_file(
                audio_path, offset=offset, duration=duration, device=device
            )
        elif audio_array is not None:
            assert sample_rate is not None, "Must set sample rate!"
            self.load_from_array(audio_array, sample_rate, device=device)

        self.window = None
        self.stft_params = stft_params

        self.metadata = {
            "offset": offset,
            "duration": duration,
        }

    @property
    def path_to_input_file(
        self,
    ):
        """
        Path to input file, if it exists.
        Alias to ``path_to_file`` for backwards compatibility
        """
        return self.path_to_file

    @classmethod
    def excerpt(
        cls,
        audio_path: typing.Union[str, Path],
        offset: float = None,
        duration: float = None,
        state: typing.Union[np.random.RandomState, int] = None,
        **kwargs,
    ):
        """Randomly draw an excerpt of ``duration`` seconds from an
        audio file specified at ``audio_path``, between ``offset`` seconds
        and end of file. ``state`` can be used to seed the random draw.

        Parameters
        ----------
        audio_path : typing.Union[str, Path]
            Path to audio file to grab excerpt from.
        offset : float, optional
            Lower bound for the start time, in seconds drawn from
            the file, by default None.
        duration : float, optional
            Duration of excerpt, in seconds, by default None
        state : typing.Union[np.random.RandomState, int], optional
            RandomState or seed of random state, by default None

        Returns
        -------
        AudioSignal
            AudioSignal containing excerpt.

        Examples
        --------
        >>> signal = AudioSignal.excerpt("path/to/audio", duration=5)
        """
        info = util.info(audio_path)
        total_duration = info.duration

        state = util.random_state(state)
        lower_bound = 0 if offset is None else offset
        upper_bound = max(total_duration - duration, 0)
        offset = state.uniform(lower_bound, upper_bound)

        signal = cls(audio_path, offset=offset, duration=duration, **kwargs)
        signal.metadata["offset"] = offset
        signal.metadata["duration"] = duration

        return signal

    @classmethod
    def salient_excerpt(
        cls,
        audio_path: typing.Union[str, Path],
        loudness_cutoff: float = None,
        num_tries: int = 8,
        state: typing.Union[np.random.RandomState, int] = None,
        **kwargs,
    ):
        """Similar to AudioSignal.excerpt, except it extracts excerpts only
        if they are above a specified loudness threshold, which is computed via
        a fast LUFS routine.

        Parameters
        ----------
        audio_path : typing.Union[str, Path]
            Path to audio file to grab excerpt from.
        loudness_cutoff : float, optional
            Loudness threshold in dB. Typical values are ``-40, -60``,
            etc, by default None
        num_tries : int, optional
            Number of tries to grab an excerpt above the threshold
            before giving up, by default 8.
        state : typing.Union[np.random.RandomState, int], optional
            RandomState or seed of random state, by default None
        kwargs : dict
            Keyword arguments to AudioSignal.excerpt

        Returns
        -------
        AudioSignal
            AudioSignal containing excerpt.


        .. warning::
            if ``num_tries`` is set to None, ``salient_excerpt`` may try forever, which can
            result in an infinite loop if ``audio_path`` does not have
            any loud enough excerpts.

        Examples
        --------
        >>> signal = AudioSignal.salient_excerpt(
                "path/to/audio",
                loudness_cutoff=-40,
                duration=5
            )
        """
        state = util.random_state(state)
        if loudness_cutoff is None:
            excerpt = cls.excerpt(audio_path, state=state, **kwargs)
        else:
            loudness = -np.inf
            num_try = 0
            while loudness <= loudness_cutoff:
                excerpt = cls.excerpt(audio_path, state=state, **kwargs)
                loudness = excerpt.loudness()
                num_try += 1
                if num_tries is not None and num_try >= num_tries:
                    break
        return excerpt

    @classmethod
    def zeros(
        cls,
        duration: float,
        sample_rate: int,
        num_channels: int = 1,
        batch_size: int = 1,
        **kwargs,
    ):
        """Helper function create an AudioSignal of all zeros.

        Parameters
        ----------
        duration : float
            Duration of AudioSignal
        sample_rate : int
            Sample rate of AudioSignal
        num_channels : int, optional
            Number of channels, by default 1
        batch_size : int, optional
            Batch size, by default 1

        Returns
        -------
        AudioSignal
            AudioSignal containing all zeros.

        Examples
        --------
        Generate 5 seconds of all zeros at a sample rate of 44100.

        >>> signal = AudioSignal.zeros(5.0, 44100)
        """
        n_samples = int(duration * sample_rate)
        return cls(
            torch.zeros(batch_size, num_channels, n_samples), sample_rate, **kwargs
        )

    @classmethod
    def wave(
        cls,
        frequency: float,
        duration: float,
        sample_rate: int,
        num_channels: int = 1,
        shape: str = "sine",
        **kwargs,
    ):
        """
        Generate a waveform of a given frequency and shape.

        Parameters
        ----------
        frequency : float
            Frequency of the waveform
        duration : float
            Duration of the waveform
        sample_rate : int
            Sample rate of the waveform
        num_channels : int, optional
            Number of channels, by default 1
        shape : str, optional
            Shape of the waveform, by default "saw"
            One of "sawtooth", "square", "sine", "triangle"
        kwargs : dict
            Keyword arguments to AudioSignal
        """
        n_samples = int(duration * sample_rate)
        t = torch.linspace(0, duration, n_samples)
        if shape == "sawtooth":
            from scipy.signal import sawtooth

            wave_data = sawtooth(2 * np.pi * frequency * t, 0.5)
        elif shape == "square":
            from scipy.signal import square

            wave_data = square(2 * np.pi * frequency * t)
        elif shape == "sine":
            wave_data = np.sin(2 * np.pi * frequency * t)
        elif shape == "triangle":
            from scipy.signal import sawtooth

            # frequency is doubled by the abs call, so omit the 2 in 2pi
            wave_data = sawtooth(np.pi * frequency * t, 0.5)
            wave_data = -np.abs(wave_data) * 2 + 1
        else:
            raise ValueError(f"Invalid shape {shape}")

        wave_data = torch.tensor(wave_data, dtype=torch.float32)
        wave_data = wave_data.unsqueeze(0).unsqueeze(0).repeat(1, num_channels, 1)
        return cls(wave_data, sample_rate, **kwargs)

    @classmethod
    def batch(
        cls,
        audio_signals: list,
        pad_signals: bool = False,
        truncate_signals: bool = False,
        resample: bool = False,
        dim: int = 0,
    ):
        """Creates a batched AudioSignal from a list of AudioSignals.

        Parameters
        ----------
        audio_signals : list[AudioSignal]
            List of AudioSignal objects
        pad_signals : bool, optional
            Whether to pad signals to length of the maximum length
            AudioSignal in the list, by default False
        truncate_signals : bool, optional
            Whether to truncate signals to length of shortest length
            AudioSignal in the list, by default False
        resample : bool, optional
            Whether to resample AudioSignal to the sample rate of
            the first AudioSignal in the list, by default False
        dim : int, optional
            Dimension along which to batch the signals.

        Returns
        -------
        AudioSignal
            Batched AudioSignal.

        Raises
        ------
        RuntimeError
            If not all AudioSignals are the same sample rate, and
            ``resample=False``, an error is raised.
        RuntimeError
            If not all AudioSignals are the same the length, and
            both ``pad_signals=False`` and ``truncate_signals=False``,
            an error is raised.

        Examples
        --------
        Batching a bunch of random signals:

        >>> signal_list = [AudioSignal(torch.randn(44100), 44100) for _ in range(10)]
        >>> signal = AudioSignal.batch(signal_list)
        >>> print(signal.shape)
        (10, 1, 44100)

        """
        signal_lengths = [x.signal_length for x in audio_signals]
        sample_rates = [x.sample_rate for x in audio_signals]

        if len(set(sample_rates)) != 1:
            if resample:
                for x in audio_signals:
                    x.resample(sample_rates[0])
            else:
                raise RuntimeError(
                    f"Not all signals had the same sample rate! Got {sample_rates}. "
                    f"All signals must have the same sample rate, or resample must be True. "
                )

        if len(set(signal_lengths)) != 1:
            if pad_signals:
                max_length = max(signal_lengths)
                for x in audio_signals:
                    pad_len = max_length - x.signal_length
                    x.zero_pad(0, pad_len)
            elif truncate_signals:
                min_length = min(signal_lengths)
                for x in audio_signals:
                    x.truncate_samples(min_length)
            else:
                raise RuntimeError(
                    f"Not all signals had the same length! Got {signal_lengths}. "
                    f"All signals must be the same length, or pad_signals/truncate_signals "
                    f"must be True. "
                )
        # Concatenate along the specified dimension (default 0)
        audio_data = torch.cat([x.audio_data for x in audio_signals], dim=dim)
        audio_paths = [x.path_to_file for x in audio_signals]

        batched_signal = cls(
            audio_data,
            sample_rate=audio_signals[0].sample_rate,
        )
        batched_signal.path_to_file = audio_paths
        return batched_signal

    # I/O
    def load_from_file(
        self,
        audio_path: typing.Union[str, Path],
        offset: float,
        duration: float,
        device: str = "cpu",
    ):
        """Loads data from file. Used internally when AudioSignal
        is instantiated with a path to a file.

        Parameters
        ----------
        audio_path : typing.Union[str, Path]
            Path to file
        offset : float
            Offset in seconds
        duration : float
            Duration in seconds
        device : str, optional
            Device to put AudioSignal on, by default "cpu"

        Returns
        -------
        AudioSignal
            AudioSignal loaded from file
        """
        import librosa

        data, sample_rate = librosa.load(
            audio_path,
            offset=offset,
            duration=duration,
            sr=None,
            mono=False,
        )
        data = util.ensure_tensor(data)
        if data.shape[-1] == 0:
            raise RuntimeError(
                f"Audio file {audio_path} with offset {offset} and duration {duration} is empty!"
            )

        if data.ndim < 2:
            data = data.unsqueeze(0)
        if data.ndim < 3:
            data = data.unsqueeze(0)
        self.audio_data = data

        self.original_signal_length = self.signal_length

        self.sample_rate = sample_rate
        self.path_to_file = audio_path
        return self.to(device)

    def load_from_array(
        self,
        audio_array: typing.Union[torch.Tensor, np.ndarray],
        sample_rate: int,
        device: str = "cpu",
    ):
        """Loads data from array, reshaping it to be exactly 3
        dimensions. Used internally when AudioSignal is called
        with a tensor or an array.

        Parameters
        ----------
        audio_array : typing.Union[torch.Tensor, np.ndarray]
            Array/tensor of audio of samples.
        sample_rate : int
            Sample rate of audio
        device : str, optional
            Device to move audio onto, by default "cpu"

        Returns
        -------
        AudioSignal
            AudioSignal loaded from array
        """
        audio_data = util.ensure_tensor(audio_array)

        if audio_data.dtype == torch.double:
            audio_data = audio_data.float()

        if audio_data.ndim < 2:
            audio_data = audio_data.unsqueeze(0)
        if audio_data.ndim < 3:
            audio_data = audio_data.unsqueeze(0)
        self.audio_data = audio_data

        self.original_signal_length = self.signal_length

        self.sample_rate = sample_rate
        return self.to(device)

    def write(self, audio_path: typing.Union[str, Path]):
        """Writes audio to a file. Only writes the audio
        that is in the very first item of the batch. To write other items
        in the batch, index the signal along the batch dimension
        before writing. After writing, the signal's ``path_to_file``
        attribute is updated to the new path.

        Parameters
        ----------
        audio_path : typing.Union[str, Path]
            Path to write audio to.

        Returns
        -------
        AudioSignal
            Returns original AudioSignal, so you can use this in a fluent
            interface.

        Examples
        --------
        Creating and writing a signal to disk:

        >>> signal = AudioSignal(torch.randn(10, 1, 44100), 44100)
        >>> signal.write("/tmp/out.wav")

        Writing a different element of the batch:

        >>> signal[5].write("/tmp/out.wav")

        Using this in a fluent interface:

        >>> signal.write("/tmp/original.wav").low_pass(4000).write("/tmp/lowpass.wav")

        """
        if self.audio_data[0].abs().max() > 1:
            warnings.warn("Audio amplitude > 1 clipped when saving")
        soundfile.write(str(audio_path), self.audio_data[0].numpy().T, self.sample_rate)

        self.path_to_file = audio_path
        return self

    def deepcopy(self):
        """Copies the signal and all of its attributes.

        Returns
        -------
        AudioSignal
            Deep copy of the audio signal.
        """
        return copy.deepcopy(self)

    def copy(self):
        """Shallow copy of signal.

        Returns
        -------
        AudioSignal
            Shallow copy of the audio signal.
        """
        return copy.copy(self)

    def clone(self):
        """Clones all tensors contained in the AudioSignal,
        and returns a copy of the signal with everything
        cloned. Useful when using AudioSignal within autograd
        computation graphs.

        Relevant attributes are the stft data, the audio data,
        and the loudness of the file.

        Returns
        -------
        AudioSignal
            Clone of AudioSignal.
        """
        clone = type(self)(
            self.audio_data.clone(),
            self.sample_rate,
            stft_params=self.stft_params,
        )
        if self.stft_data is not None:
            clone.stft_data = self.stft_data.clone()
        if self._loudness is not None:
            clone._loudness = self._loudness.clone()
        clone.path_to_file = copy.deepcopy(self.path_to_file)
        clone.metadata = copy.deepcopy(self.metadata)
        return clone

    def detach(self):
        """Detaches tensors contained in AudioSignal.

        Relevant attributes are the stft data, the audio data,
        and the loudness of the file.

        Returns
        -------
        AudioSignal
            Same signal, but with all tensors detached.
        """
        if self._loudness is not None:
            self._loudness = self._loudness.detach()
        if self.stft_data is not None:
            self.stft_data = self.stft_data.detach()

        self.audio_data = self.audio_data.detach()
        return self

    def hash(self):
        """Writes the audio data to a temporary file, and then
        hashes it using hashlib. Useful for creating a file
        name based on the audio content.

        Returns
        -------
        str
            Hash of audio data.

        Examples
        --------
        Creating a signal, and writing it to a unique file name:

        >>> signal = AudioSignal(torch.randn(44100), 44100)
        >>> hash = signal.hash()
        >>> signal.write(f"{hash}.wav")

        """
        with tempfile.NamedTemporaryFile(suffix=".wav") as f:
            self.write(f.name)
            h = hashlib.sha256()
            b = bytearray(128 * 1024)
            mv = memoryview(b)
            with open(f.name, "rb", buffering=0) as f:
                for n in iter(lambda: f.readinto(mv), 0):
                    h.update(mv[:n])
            file_hash = h.hexdigest()
        return file_hash

    # Signal operations
    def to_mono(self):
        """Converts audio data to mono audio, by taking the mean
        along the channels dimension.

        Returns
        -------
        AudioSignal
            AudioSignal with mean of channels.
        """
        self.audio_data = self.audio_data.mean(1, keepdim=True)
        return self

    def resample(self, sample_rate: int):
        """Resamples the audio, using sinc interpolation. This works on both
        cpu and gpu, and is much faster on gpu.

        Parameters
        ----------
        sample_rate : int
            Sample rate to resample to.

        Returns
        -------
        AudioSignal
            Resampled AudioSignal
        """
        if sample_rate == self.sample_rate:
            return self
        self.audio_data = julius.resample_frac(
            self.audio_data, self.sample_rate, sample_rate
        )
        self.sample_rate = sample_rate
        return self

    # Tensor operations
    def to(self, device: str):
        """Moves all tensors contained in signal to the specified device.

        Parameters
        ----------
        device : str
            Device to move AudioSignal onto. Typical values are
            "cuda", "cpu", or "cuda:n" to specify the nth gpu.

        Returns
        -------
        AudioSignal
            AudioSignal with all tensors moved to specified device.
        """
        if self._loudness is not None:
            self._loudness = self._loudness.to(device)
        if self.stft_data is not None:
            self.stft_data = self.stft_data.to(device)
        if self.audio_data is not None:
            self.audio_data = self.audio_data.to(device)
        return self

    def float(self):
        """Calls ``.float()`` on ``self.audio_data``.

        Returns
        -------
        AudioSignal
        """
        self.audio_data = self.audio_data.float()
        return self

    def cpu(self):
        """Moves AudioSignal to cpu.

        Returns
        -------
        AudioSignal
        """
        return self.to("cpu")

    def cuda(self):  # pragma: no cover
        """Moves AudioSignal to cuda.

        Returns
        -------
        AudioSignal
        """
        return self.to("cuda")

    def numpy(self):
        """Detaches ``self.audio_data``, moves to cpu, and converts to numpy.

        Returns
        -------
        np.ndarray
            Audio data as a numpy array.
        """
        return self.audio_data.detach().cpu().numpy()

    def zero_pad(self, before: int, after: int):
        """Zero pads the audio_data tensor before and after.

        Parameters
        ----------
        before : int
            How many zeros to prepend to audio.
        after : int
            How many zeros to append to audio.

        Returns
        -------
        AudioSignal
            AudioSignal with padding applied.
        """
        self.audio_data = torch.nn.functional.pad(self.audio_data, (before, after))
        return self

    def zero_pad_to(self, length: int, mode: str = "after"):
        """Pad with zeros to a specified length, either before or after
        the audio data.

        Parameters
        ----------
        length : int
            Length to pad to
        mode : str, optional
            Whether to prepend or append zeros to signal, by default "after"

        Returns
        -------
        AudioSignal
            AudioSignal with padding applied.
        """
        if mode == "before":
            self.zero_pad(max(length - self.signal_length, 0), 0)
        elif mode == "after":
            self.zero_pad(0, max(length - self.signal_length, 0))
        return self

    def trim(self, before: int, after: int):
        """Trims the audio_data tensor before and after.

        Parameters
        ----------
        before : int
            How many samples to trim from beginning.
        after : int
            How many samples to trim from end.

        Returns
        -------
        AudioSignal
            AudioSignal with trimming applied.
        """
        if after == 0:
            self.audio_data = self.audio_data[..., before:]
        else:
            self.audio_data = self.audio_data[..., before:-after]
        return self

    def truncate_samples(self, length_in_samples: int):
        """Truncate signal to specified length.

        Parameters
        ----------
        length_in_samples : int
            Truncate to this many samples.

        Returns
        -------
        AudioSignal
            AudioSignal with truncation applied.
        """
        self.audio_data = self.audio_data[..., :length_in_samples]
        return self

    @property
    def device(self):
        """Get device that AudioSignal is on.

        Returns
        -------
        torch.device
            Device that AudioSignal is on.
        """
        if self.audio_data is not None:
            device = self.audio_data.device
        elif self.stft_data is not None:
            device = self.stft_data.device
        return device

    # Properties
    @property
    def audio_data(self):
        """Returns the audio data tensor in the object.

        Audio data is always of the shape
        (batch_size, num_channels, num_samples). If value has less
        than 3 dims (e.g. is (num_channels, num_samples)), then it will
        be reshaped to (1, num_channels, num_samples) - a batch size of 1.

        Parameters
        ----------
        data : typing.Union[torch.Tensor, np.ndarray]
            Audio data to set.

        Returns
        -------
        torch.Tensor
            Audio samples.
        """
        return self._audio_data

    @audio_data.setter
    def audio_data(self, data: typing.Union[torch.Tensor, np.ndarray]):
        if data is not None:
            assert torch.is_tensor(data), "audio_data should be torch.Tensor"
            assert data.ndim == 3, "audio_data should be 3-dim (B, C, T)"
        self._audio_data = data
        # Old loudness value not guaranteed to be right, reset it.
        self._loudness = None
        return

    # alias for audio_data
    samples = audio_data

    @property
    def stft_data(self):
        """Returns the STFT data inside the signal. Shape is
        (batch, channels, frequencies, time).

        Returns
        -------
        torch.Tensor
            Complex spectrogram data.
        """
        return self._stft_data

    @stft_data.setter
    def stft_data(self, data: typing.Union[torch.Tensor, np.ndarray]):
        if data is not None:
            assert torch.is_tensor(data) and torch.is_complex(data)
            if self.stft_data is not None and self.stft_data.shape != data.shape:
                warnings.warn("stft_data changed shape")
        self._stft_data = data
        return

    @property
    def batch_size(self):
        """Batch size of audio signal.

        Returns
        -------
        int
            Batch size of signal.
        """
        return self.audio_data.shape[0]

    @property
    def signal_length(self):
        """Length of audio signal.

        Returns
        -------
        int
            Length of signal in samples.
        """
        return self.audio_data.shape[-1]

    # alias for signal_length
    length = signal_length

    @property
    def shape(self):
        """Shape of audio data.

        Returns
        -------
        tuple
            Shape of audio data.
        """
        return self.audio_data.shape

    @property
    def signal_duration(self):
        """Length of audio signal in seconds.

        Returns
        -------
        float
            Length of signal in seconds.
        """
        return self.signal_length / self.sample_rate

    # alias for signal_duration
    duration = signal_duration

    @property
    def num_channels(self):
        """Number of audio channels.

        Returns
        -------
        int
            Number of audio channels.
        """
        return self.audio_data.shape[1]

    # STFT
    @staticmethod
    @functools.lru_cache(None)
    def get_window(window_type: str, window_length: int, device: str):
        """Wrapper around scipy.signal.get_window so one can also get the
        popular sqrt-hann window. This function caches for efficiency
        using functools.lru\_cache.

        Parameters
        ----------
        window_type : str
            Type of window to get
        window_length : int
            Length of the window
        device : str
            Device to put window onto.

        Returns
        -------
        torch.Tensor
            Window returned by scipy.signal.get_window, as a tensor.
        """
        from scipy import signal

        if window_type == "average":
            window = np.ones(window_length) / window_length
        elif window_type == "sqrt_hann":
            window = np.sqrt(signal.get_window("hann", window_length))
        else:
            window = signal.get_window(window_type, window_length)
        window = torch.from_numpy(window).to(device).float()
        return window

    @property
    def stft_params(self):
        """Returns STFTParams object, which can be re-used to other
        AudioSignals.

        This property can be set as well. If values are not defined in STFTParams,
        they are inferred automatically from the signal properties. The default is to use
        32ms windows, with 8ms hop length, and the square root of the hann window.

        Returns
        -------
        STFTParams
            STFT parameters for the AudioSignal.

        Examples
        --------
        >>> stft_params = STFTParams(128, 32)
        >>> signal1 = AudioSignal(torch.randn(44100), 44100, stft_params=stft_params)
        >>> signal2 = AudioSignal(torch.randn(44100), 44100, stft_params=signal1.stft_params)
        >>> signal1.stft_params = STFTParams() # Defaults
        """
        return self._stft_params

    @stft_params.setter
    def stft_params(self, value: STFTParams):
        default_win_len = int(2 ** (np.ceil(np.log2(0.032 * self.sample_rate))))
        default_hop_len = default_win_len // 4
        default_win_type = "hann"
        default_match_stride = False
        default_padding_type = "reflect"

        default_stft_params = STFTParams(
            window_length=default_win_len,
            hop_length=default_hop_len,
            window_type=default_win_type,
            match_stride=default_match_stride,
            padding_type=default_padding_type,
        )._asdict()

        value = value._asdict() if value else default_stft_params

        for key in default_stft_params:
            if value[key] is None:
                value[key] = default_stft_params[key]

        self._stft_params = STFTParams(**value)
        self.stft_data = None

    def compute_stft_padding(
        self, window_length: int, hop_length: int, match_stride: bool
    ):
        """Compute how the STFT should be padded, based on match\_stride.

        Parameters
        ----------
        window_length : int
            Window length of STFT.
        hop_length : int
            Hop length of STFT.
        match_stride : bool
            Whether or not to match stride, making the STFT have the same alignment as
            convolutional layers.

        Returns
        -------
        tuple
            Amount to pad on either side of audio.
        """
        length = self.signal_length

        if match_stride:
            assert (
                hop_length == window_length // 4
            ), "For match_stride, hop must equal n_fft // 4"
            right_pad = math.ceil(length / hop_length) * hop_length - length
            pad = (window_length - hop_length) // 2
        else:
            right_pad = 0
            pad = 0

        return right_pad, pad

    def stft(
        self,
        window_length: int = None,
        hop_length: int = None,
        window_type: str = None,
        match_stride: bool = None,
        padding_type: str = None,
    ):
        """Computes the short-time Fourier transform of the audio data,
        with specified STFT parameters.

        Parameters
        ----------
        window_length : int, optional
            Window length of STFT, by default ``0.032 * self.sample_rate``.
        hop_length : int, optional
            Hop length of STFT, by default ``window_length // 4``.
        window_type : str, optional
            Type of window to use, by default ``sqrt\_hann``.
        match_stride : bool, optional
            Whether to match the stride of convolutional layers, by default False
        padding_type : str, optional
            Type of padding to use, by default 'reflect'

        Returns
        -------
        torch.Tensor
            STFT of audio data.

        Examples
        --------
        Compute the STFT of an AudioSignal:

        >>> signal = AudioSignal(torch.randn(44100), 44100)
        >>> signal.stft()

        Vary the window and hop length:

        >>> stft_params = [STFTParams(128, 32), STFTParams(512, 128)]
        >>> for stft_param in stft_params:
        >>>     signal.stft_params = stft_params
        >>>     signal.stft()

        """
        window_length = (
            self.stft_params.window_length
            if window_length is None
            else int(window_length)
        )
        hop_length = (
            self.stft_params.hop_length if hop_length is None else int(hop_length)
        )
        window_type = (
            self.stft_params.window_type if window_type is None else window_type
        )
        match_stride = (
            self.stft_params.match_stride if match_stride is None else match_stride
        )
        padding_type = (
            self.stft_params.padding_type if padding_type is None else padding_type
        )

        window = self.get_window(window_type, window_length, self.audio_data.device)
        window = window.to(self.audio_data.device)

        audio_data = self.audio_data
        right_pad, pad = self.compute_stft_padding(
            window_length, hop_length, match_stride
        )
        audio_data = torch.nn.functional.pad(
            audio_data, (pad, pad + right_pad), padding_type
        )
        stft_data = torch.stft(
            audio_data.reshape(-1, audio_data.shape[-1]),
            n_fft=window_length,
            hop_length=hop_length,
            window=window,
            return_complex=True,
            center=True,
        )
        _, nf, nt = stft_data.shape
        stft_data = stft_data.reshape(self.batch_size, self.num_channels, nf, nt)

        if match_stride:
            # Drop first two and last two frames, which are added
            # because of padding. Now num_frames * hop_length = num_samples.
            stft_data = stft_data[..., 2:-2]
        self.stft_data = stft_data

        return stft_data

    def istft(
        self,
        window_length: int = None,
        hop_length: int = None,
        window_type: str = None,
        match_stride: bool = None,
        length: int = None,
    ):
        """Computes inverse STFT and sets it to audio\_data.

        Parameters
        ----------
        window_length : int, optional
            Window length of STFT, by default ``0.032 * self.sample_rate``.
        hop_length : int, optional
            Hop length of STFT, by default ``window_length // 4``.
        window_type : str, optional
            Type of window to use, by default ``sqrt\_hann``.
        match_stride : bool, optional
            Whether to match the stride of convolutional layers, by default False
        length : int, optional
            Original length of signal, by default None

        Returns
        -------
        AudioSignal
            AudioSignal with istft applied.

        Raises
        ------
        RuntimeError
            Raises an error if stft was not called prior to istft on the signal,
            or if stft_data is not set.
        """
        if self.stft_data is None:
            raise RuntimeError("Cannot do inverse STFT without self.stft_data!")

        window_length = (
            self.stft_params.window_length
            if window_length is None
            else int(window_length)
        )
        hop_length = (
            self.stft_params.hop_length if hop_length is None else int(hop_length)
        )
        window_type = (
            self.stft_params.window_type if window_type is None else window_type
        )
        match_stride = (
            self.stft_params.match_stride if match_stride is None else match_stride
        )

        window = self.get_window(window_type, window_length, self.stft_data.device)

        nb, nch, nf, nt = self.stft_data.shape
        stft_data = self.stft_data.reshape(nb * nch, nf, nt)
        right_pad, pad = self.compute_stft_padding(
            window_length, hop_length, match_stride
        )

        if length is None:
            length = self.original_signal_length
            length = length + 2 * pad + right_pad

        if match_stride:
            # Zero-pad the STFT on either side, putting back the frames that were
            # dropped in stft().
            stft_data = torch.nn.functional.pad(stft_data, (2, 2))

        audio_data = torch.istft(
            stft_data,
            n_fft=window_length,
            hop_length=hop_length,
            window=window,
            length=length,
            center=True,
        )
        audio_data = audio_data.reshape(nb, nch, -1)
        if match_stride:
            audio_data = audio_data[..., pad : -(pad + right_pad)]
        self.audio_data = audio_data

        return self

    @staticmethod
    @functools.lru_cache(None)
    def get_mel_filters(
        sr: int, n_fft: int, n_mels: int, fmin: float = 0.0, fmax: float = None
    ):
        """Create a Filterbank matrix to combine FFT bins into Mel-frequency bins.

        Parameters
        ----------
        sr : int
            Sample rate of audio
        n_fft : int
            Number of FFT bins
        n_mels : int
            Number of mels
        fmin : float, optional
            Lowest frequency, in Hz, by default 0.0
        fmax : float, optional
            Highest frequency, by default None

        Returns
        -------
        np.ndarray [shape=(n_mels, 1 + n_fft/2)]
            Mel transform matrix
        """
        from librosa.filters import mel as librosa_mel_fn

        return librosa_mel_fn(
            sr=sr,
            n_fft=n_fft,
            n_mels=n_mels,
            fmin=fmin,
            fmax=fmax,
        )

    def mel_spectrogram(
        self, n_mels: int = 80, mel_fmin: float = 0.0, mel_fmax: float = None, **kwargs
    ):
        """Computes a Mel spectrogram.

        Parameters
        ----------
        n_mels : int, optional
            Number of mels, by default 80
        mel_fmin : float, optional
            Lowest frequency, in Hz, by default 0.0
        mel_fmax : float, optional
            Highest frequency, by default None
        kwargs : dict, optional
            Keyword arguments to self.stft().

        Returns
        -------
        torch.Tensor [shape=(batch, channels, mels, time)]
            Mel spectrogram.
        """
        stft = self.stft(**kwargs)
        magnitude = torch.abs(stft)

        nf = magnitude.shape[2]
        mel_basis = self.get_mel_filters(
            sr=self.sample_rate,
            n_fft=2 * (nf - 1),
            n_mels=n_mels,
            fmin=mel_fmin,
            fmax=mel_fmax,
        )
        mel_basis = torch.from_numpy(mel_basis).to(self.device)

        mel_spectrogram = magnitude.transpose(2, -1) @ mel_basis.T
        mel_spectrogram = mel_spectrogram.transpose(-1, 2)
        return mel_spectrogram

    @staticmethod
    @functools.lru_cache(None)
    def get_dct(n_mfcc: int, n_mels: int, norm: str = "ortho", device: str = None):
        """Create a discrete cosine transform (DCT) transformation matrix with shape (``n_mels``, ``n_mfcc``),
        it can be normalized depending on norm. For more information about dct:
        http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II

        Parameters
        ----------
        n_mfcc : int
            Number of mfccs
        n_mels : int
            Number of mels
        norm   : str
            Use "ortho" to get a orthogonal matrix or None, by default "ortho"
        device : str, optional
            Device to load the transformation matrix on, by default None

        Returns
        -------
        torch.Tensor [shape=(n_mels, n_mfcc)] T
            The dct transformation matrix.
        """
        from torchaudio.functional import create_dct

        return create_dct(n_mfcc, n_mels, norm).to(device)

    def mfcc(
        self, n_mfcc: int = 40, n_mels: int = 80, log_offset: float = 1e-6, **kwargs
    ):
        """Computes mel-frequency cepstral coefficients (MFCCs).

        Parameters
        ----------
        n_mfcc : int, optional
            Number of mels, by default 40
        n_mels : int, optional
            Number of mels, by default 80
        log_offset: float, optional
            Small value to prevent numerical issues when trying to compute log(0), by default 1e-6
        kwargs : dict, optional
            Keyword arguments to self.mel_spectrogram(), note that some of them will be used for self.stft()

        Returns
        -------
        torch.Tensor [shape=(batch, channels, mfccs, time)]
            MFCCs.
        """

        mel_spectrogram = self.mel_spectrogram(n_mels, **kwargs)
        mel_spectrogram = torch.log(mel_spectrogram + log_offset)
        dct_mat = self.get_dct(n_mfcc, n_mels, "ortho", self.device)

        mfcc = mel_spectrogram.transpose(-1, -2) @ dct_mat
        mfcc = mfcc.transpose(-1, -2)
        return mfcc

    @property
    def magnitude(self):
        """Computes and returns the absolute value of the STFT, which
        is the magnitude. This value can also be set to some tensor.
        When set, ``self.stft_data`` is manipulated so that its magnitude
        matches what this is set to, and modulated by the phase.

        Returns
        -------
        torch.Tensor
            Magnitude of STFT.

        Examples
        --------
        >>> signal = AudioSignal(torch.randn(44100), 44100)
        >>> magnitude = signal.magnitude # Computes stft if not computed
        >>> magnitude[magnitude < magnitude.mean()] = 0
        >>> signal.magnitude = magnitude
        >>> signal.istft()
        """
        if self.stft_data is None:
            self.stft()
        return torch.abs(self.stft_data)

    @magnitude.setter
    def magnitude(self, value):
        self.stft_data = value * torch.exp(1j * self.phase)
        return

    def log_magnitude(
        self, ref_value: float = 1.0, amin: float = 1e-5, top_db: float = 80.0
    ):
        """Computes the log-magnitude of the spectrogram.

        Parameters
        ----------
        ref_value : float, optional
            The magnitude is scaled relative to ``ref``: ``20 * log10(S / ref)``.
            Zeros in the output correspond to positions where ``S == ref``,
            by default 1.0
        amin : float, optional
            Minimum threshold for ``S`` and ``ref``, by default 1e-5
        top_db : float, optional
            Threshold the output at ``top_db`` below the peak:
            ``max(10 * log10(S/ref)) - top_db``, by default -80.0

        Returns
        -------
        torch.Tensor
            Log-magnitude spectrogram
        """
        magnitude = self.magnitude

        amin = amin**2
        log_spec = 10.0 * torch.log10(magnitude.pow(2).clamp(min=amin))
        log_spec -= 10.0 * np.log10(np.maximum(amin, ref_value))

        if top_db is not None:
            log_spec = torch.maximum(log_spec, log_spec.max() - top_db)
        return log_spec

    @property
    def phase(self):
        """Computes and returns the phase of the STFT.
        This value can also be set to some tensor.
        When set, ``self.stft_data`` is manipulated so that its phase
        matches what this is set to, we original magnitudeith th.

        Returns
        -------
        torch.Tensor
            Phase of STFT.

        Examples
        --------
        >>> signal = AudioSignal(torch.randn(44100), 44100)
        >>> phase = signal.phase # Computes stft if not computed
        >>> phase[phase < phase.mean()] = 0
        >>> signal.phase = phase
        >>> signal.istft()
        """
        if self.stft_data is None:
            self.stft()
        return torch.angle(self.stft_data)

    @phase.setter
    def phase(self, value):
        self.stft_data = self.magnitude * torch.exp(1j * value)
        return

    # Operator overloading
    def __add__(self, other):
        new_signal = self.clone()
        new_signal.audio_data += util._get_value(other)
        return new_signal

    def __iadd__(self, other):
        self.audio_data += util._get_value(other)
        return self

    def __radd__(self, other):
        return self + other

    def __sub__(self, other):
        new_signal = self.clone()
        new_signal.audio_data -= util._get_value(other)
        return new_signal

    def __isub__(self, other):
        self.audio_data -= util._get_value(other)
        return self

    def __mul__(self, other):
        new_signal = self.clone()
        new_signal.audio_data *= util._get_value(other)
        return new_signal

    def __imul__(self, other):
        self.audio_data *= util._get_value(other)
        return self

    def __rmul__(self, other):
        return self * other

    # Representation
    def _info(self):
        dur = f"{self.signal_duration:0.3f}" if self.signal_duration else "[unknown]"
        info = {
            "duration": f"{dur} seconds",
            "batch_size": self.batch_size,
            "path": self.path_to_file if self.path_to_file else "path unknown",
            "sample_rate": self.sample_rate,
            "num_channels": self.num_channels if self.num_channels else "[unknown]",
            "audio_data.shape": self.audio_data.shape,
            "stft_params": self.stft_params,
            "device": self.device,
        }

        return info

    def markdown(self):
        """Produces a markdown representation of AudioSignal, in a markdown table.

        Returns
        -------
        str
            Markdown representation of AudioSignal.

        Examples
        --------
        >>> signal = AudioSignal(torch.randn(44100), 44100)
        >>> print(signal.markdown())
        | Key | Value
        |---|---
        | duration | 1.000 seconds |
        | batch_size | 1 |
        | path | path unknown |
        | sample_rate | 44100 |
        | num_channels | 1 |
        | audio_data.shape | torch.Size([1, 1, 44100]) |
        | stft_params | STFTParams(window_length=2048, hop_length=512, window_type='sqrt_hann', match_stride=False) |
        | device | cpu |
        """
        info = self._info()

        FORMAT = "| Key | Value \n" "|---|--- \n"
        for k, v in info.items():
            row = f"| {k} | {v} |\n"
            FORMAT += row
        return FORMAT

    def __str__(self):
        info = self._info()

        desc = ""
        for k, v in info.items():
            desc += f"{k}: {v}\n"
        return desc

    def __rich__(self):
        from rich.table import Table

        info = self._info()

        table = Table(title=f"{self.__class__.__name__}")
        table.add_column("Key", style="green")
        table.add_column("Value", style="cyan")

        for k, v in info.items():
            table.add_row(k, str(v))
        return table

    # Comparison
    def __eq__(self, other):
        for k, v in list(self.__dict__.items()):
            if torch.is_tensor(v):
                if not torch.allclose(v, other.__dict__[k], atol=1e-6):
                    max_error = (v - other.__dict__[k]).abs().max()
                    print(f"Max abs error for {k}: {max_error}")
                    return False
        return True

    # Indexing
    def __getitem__(self, key):
        if torch.is_tensor(key) and key.ndim == 0 and key.item() is True:
            assert self.batch_size == 1
            audio_data = self.audio_data
            _loudness = self._loudness
            stft_data = self.stft_data

        elif isinstance(key, (bool, int, list, slice, tuple)) or (
            torch.is_tensor(key) and key.ndim <= 1
        ):
            # Indexing only on the batch dimension.
            # Then let's copy over relevant stuff.
            # Future work: make this work for time-indexing
            # as well, using the hop length.
            audio_data = self.audio_data[key]
            _loudness = self._loudness[key] if self._loudness is not None else None
            stft_data = self.stft_data[key] if self.stft_data is not None else None

        sources = None

        copy = type(self)(audio_data, self.sample_rate, stft_params=self.stft_params)
        copy._loudness = _loudness
        copy._stft_data = stft_data
        copy.sources = sources

        return copy

    def __setitem__(self, key, value):
        if not isinstance(value, type(self)):
            self.audio_data[key] = value
            return

        if torch.is_tensor(key) and key.ndim == 0 and key.item() is True:
            assert self.batch_size == 1
            self.audio_data = value.audio_data
            self._loudness = value._loudness
            self.stft_data = value.stft_data
            return

        elif isinstance(key, (bool, int, list, slice, tuple)) or (
            torch.is_tensor(key) and key.ndim <= 1
        ):
            if self.audio_data is not None and value.audio_data is not None:
                self.audio_data[key] = value.audio_data
            if self._loudness is not None and value._loudness is not None:
                self._loudness[key] = value._loudness
            if self.stft_data is not None and value.stft_data is not None:
                self.stft_data[key] = value.stft_data
            return

    def __ne__(self, other):
        return not self == other