File size: 7,956 Bytes
575f48c
 
 
 
 
a0381f4
575f48c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0381f4
575f48c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac16232
575f48c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a580aa
 
 
 
 
 
 
575f48c
 
 
172986f
c38bd52
575f48c
5586202
16d4e9a
4e43d4d
575f48c
 
 
 
 
 
 
 
320ea76
575f48c
 
 
 
 
 
320ea76
575f48c
 
 
 
 
 
b8b1462
575f48c
 
 
 
 
 
 
 
4a580aa
 
 
 
 
575f48c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
925e91c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import torch
import random
import numpy as np
import gradio as gr
import librosa
# import spaces
from accelerate import Accelerator
from transformers import T5Tokenizer, T5EncoderModel
from diffusers import DDIMScheduler
from src.models.conditioners import MaskDiT
from src.models.controlnet import DiTControlNet
from src.models.conditions import Conditioner
from src.modules.autoencoder_wrapper import Autoencoder
from src.inference_controlnet import inference
from src.utils import load_yaml_with_includes


# Load model and configs
def load_models(config_name, ckpt_path, controlnet_path, vae_path, device):
    params = load_yaml_with_includes(config_name)

    # Load codec model
    autoencoder = Autoencoder(ckpt_path=vae_path,
                              model_type=params['autoencoder']['name'],
                              quantization_first=params['autoencoder']['q_first']).to(device)
    autoencoder.eval()

    # Load text encoder
    tokenizer = T5Tokenizer.from_pretrained(params['text_encoder']['model'])
    text_encoder = T5EncoderModel.from_pretrained(params['text_encoder']['model']).to(device)
    text_encoder.eval()

    # Load main U-Net model
    unet = MaskDiT(**params['model']).to(device)
    unet.load_state_dict(torch.load(ckpt_path, map_location='cpu')['model'])
    unet.eval()

    controlnet_config = params['model'].copy()
    controlnet_config.update(params['controlnet'])
    controlnet = DiTControlNet(**controlnet_config).to(device)
    controlnet.eval()
    controlnet.load_state_dict(torch.load(controlnet_path, map_location='cpu')['model'])
    conditioner = Conditioner(**params['conditioner']).to(device)

    accelerator = Accelerator(mixed_precision="fp16")
    unet, controlnet = accelerator.prepare(unet, controlnet)

    # Load noise scheduler
    noise_scheduler = DDIMScheduler(**params['diff'])

    latents = torch.randn((1, 128, 128), device=device)
    noise = torch.randn_like(latents)
    timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (1,), device=device)
    _ = noise_scheduler.add_noise(latents, noise, timesteps)

    return autoencoder, unet, controlnet, conditioner, tokenizer, text_encoder, noise_scheduler, params


MAX_SEED = np.iinfo(np.int32).max

# Model and config paths
config_name = 'ckpts/controlnet/energy_l.yml'
ckpt_path = 'ckpts/s3/ezaudio_s3_l.pt'
controlnet_path = 'ckpts/controlnet/s3_l_energy.pt'
vae_path = 'ckpts/vae/1m.pt'
# save_path = 'output/'
# os.makedirs(save_path, exist_ok=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'

(autoencoder, unet, controlnet, conditioner, 
 tokenizer, text_encoder, noise_scheduler, params) = load_models(config_name, ckpt_path, controlnet_path, vae_path, device)


# @spaces.GPU
def generate_audio(text,
                   audio_path, surpass_noise,
                   guidance_scale, guidance_rescale, 
                   ddim_steps, eta,
                   conditioning_scale,
                   random_seed, randomize_seed):
    sr = params['autoencoder']['sr']

    gt, _ = librosa.load(audio_path, sr=sr)
    gt = gt / (np.max(np.abs(gt)) + 1e-9)  # Normalize audio

    if surpass_noise > 0:
        mask = np.abs(gt) <= surpass_noise
        gt[mask] = 0

    original_length = len(gt)
    # Ensure the audio is of the correct length by padding or trimming
    duration_seconds = min(len(gt) / sr, 10)
    quantized_duration = np.ceil(duration_seconds * 2) / 2  # This rounds to the nearest 0.5 seconds
    num_samples = int(quantized_duration * sr)
    audio_frames = round(num_samples / sr * params['autoencoder']['latent_sr'])

    if len(gt) < num_samples:
        padding = num_samples - len(gt)
        gt = np.pad(gt, (0, padding), 'constant')
    else:
        gt = gt[:num_samples]

    gt_audio = torch.tensor(gt).unsqueeze(0).unsqueeze(1).to(device)
    gt = autoencoder(audio=gt_audio)
    condition = conditioner(gt_audio.squeeze(1), gt.shape)

    # Handle random seed
    if randomize_seed:
        random_seed = random.randint(0, MAX_SEED)

    # Perform inference
    pred = inference(autoencoder, unet, controlnet,
                     None, None, condition,
                     tokenizer, text_encoder, 
                     params, noise_scheduler,
                     text, neg_text=None,
                     audio_frames=audio_frames, 
                     guidance_scale=guidance_scale, guidance_rescale=guidance_rescale, 
                     ddim_steps=ddim_steps, eta=eta, random_seed=random_seed, 
                     conditioning_scale=conditioning_scale, device=device)

    pred = pred.cpu().numpy().squeeze(0).squeeze(0)[:original_length]

    return sr, pred

# CSS styling (optional)
css = """
#col-container {
    margin: 0 auto;
    max-width: 1280px;
}
"""

examples_energy = [
    ["Dog barking in the background", "reference.mp3"],
    ["Duck quacking", "reference2.mp3"],
    ["Truck honking on the street", "reference3.mp3"]
]


# Gradio Blocks layout
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
        # EzAudio-ControlNet: Interactive and Creative Control for Text-to-Audio Generation
        EzAudio-ControlNet enables control over the timing of sound effects within audio generation.
        
        Learn more about 🟣**EzAudio** on the [EzAudio Homepage](https://haidog-yaqub.github.io/EzAudio-Page/).
        
        Explore **Vanilla Text-to-Audio**, **Editing**, and **Inpainting** features on the [🤗EzAudio Space](https://huggingface.co/spaces/OpenSound/EzAudio).
    """)
    with gr.Row():
        # Input for the text prompt (used for generating new audio)
        text_input = gr.Textbox(
            label="Text Prompt",
            show_label=True,
            max_lines=2,
            placeholder="Describe the sound you want to generate",
            value="Truck honking on the street",
            scale=4
        )
        # Button to generate the audio
        generate_button = gr.Button("Generate")
        
    # Audio input to use as base
    audio_file_input = gr.Audio(label="Upload Reference Audio (less than 10s)", value='reference3.mp3', type="filepath")
    
    # Output Component for the generated audio
    generated_audio_output = gr.Audio(label="Generated Audio", type="numpy")
    
    with gr.Accordion("Advanced Settings", open=False):
        # Length of the generated audio
        surpass_noise = gr.Slider(minimum=0, maximum=0.1, step=0.01, value=0.0, label="Noise Threshold (Amplitude)")
        guidance_scale = gr.Slider(minimum=1.0, maximum=10.0, step=0.5, value=5.0, label="Guidance Scale")
        guidance_rescale = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.5, label="Guidance Rescale")
        ddim_steps = gr.Slider(minimum=25, maximum=200, step=5, value=50, label="DDIM Steps")
        eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Eta")
        conditioning_scale = gr.Slider(minimum=0.0, maximum=2.0, step=0.25, value=1.0, label="Conditioning Scale")
        random_seed = gr.Slider(minimum=0, maximum=10000, step=1, value=0, label="Random Seed")
        randomize_seed = gr.Checkbox(label="Randomize Seed (Disable Seed)", value=True)

    gr.Examples(
    examples=examples_energy,
    inputs=[text_input, audio_file_input]
    )
    
    # Link the inputs to the function
    generate_button.click(
        fn=generate_audio,
        inputs=[
            text_input, audio_file_input, surpass_noise, guidance_scale, guidance_rescale,
            ddim_steps, eta, conditioning_scale, random_seed, randomize_seed
        ],
        outputs=[generated_audio_output]
    )

    text_input.submit(
        fn=generate_audio,
        inputs=[
            text_input, audio_file_input, surpass_noise, guidance_scale, guidance_rescale,
            ddim_steps, eta, conditioning_scale, random_seed, randomize_seed
        ],
        outputs=[generated_audio_output]
    )

# Launch the Gradio demo
demo.launch()