|
import os |
|
import random |
|
import pandas as pd |
|
import torch |
|
import librosa |
|
import numpy as np |
|
import soundfile as sf |
|
from tqdm import tqdm |
|
from .utils import scale_shift_re |
|
|
|
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): |
|
""" |
|
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 |
|
""" |
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) |
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) |
|
|
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) |
|
|
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg |
|
return noise_cfg |
|
|
|
|
|
@torch.no_grad() |
|
def inference(autoencoder, unet, gt, gt_mask, |
|
tokenizer, text_encoder, |
|
params, noise_scheduler, |
|
text_raw, neg_text=None, |
|
audio_frames=500, |
|
guidance_scale=3, guidance_rescale=0.0, |
|
ddim_steps=50, eta=1, random_seed=2024, |
|
device='cuda', |
|
): |
|
if neg_text is None: |
|
neg_text = [""] |
|
if tokenizer is not None: |
|
text_batch = tokenizer(text_raw, |
|
max_length=params['text_encoder']['max_length'], |
|
padding="max_length", truncation=True, return_tensors="pt") |
|
text, text_mask = text_batch.input_ids.to(device), text_batch.attention_mask.to(device).bool() |
|
text = text_encoder(input_ids=text, attention_mask=text_mask).last_hidden_state |
|
|
|
uncond_text_batch = tokenizer(neg_text, |
|
max_length=params['text_encoder']['max_length'], |
|
padding="max_length", truncation=True, return_tensors="pt") |
|
uncond_text, uncond_text_mask = uncond_text_batch.input_ids.to(device), uncond_text_batch.attention_mask.to(device).bool() |
|
uncond_text = text_encoder(input_ids=uncond_text, |
|
attention_mask=uncond_text_mask).last_hidden_state |
|
else: |
|
text, text_mask = None, None |
|
guidance_scale = None |
|
|
|
codec_dim = params['model']['out_chans'] |
|
unet.eval() |
|
|
|
if random_seed is not None: |
|
generator = torch.Generator(device=device).manual_seed(random_seed) |
|
else: |
|
generator = torch.Generator(device=device) |
|
generator.seed() |
|
|
|
noise_scheduler.set_timesteps(ddim_steps) |
|
|
|
|
|
noise = torch.randn((1, codec_dim, audio_frames), generator=generator, device=device) |
|
latents = noise |
|
|
|
for t in noise_scheduler.timesteps: |
|
latents = noise_scheduler.scale_model_input(latents, t) |
|
|
|
if guidance_scale: |
|
|
|
latents_combined = torch.cat([latents, latents], dim=0) |
|
text_combined = torch.cat([text, uncond_text], dim=0) |
|
text_mask_combined = torch.cat([text_mask, uncond_text_mask], dim=0) |
|
|
|
if gt is not None: |
|
gt_combined = torch.cat([gt, gt], dim=0) |
|
gt_mask_combined = torch.cat([gt_mask, gt_mask], dim=0) |
|
else: |
|
gt_combined = None |
|
gt_mask_combined = None |
|
|
|
output_combined, _ = unet(latents_combined, t, text_combined, context_mask=text_mask_combined, |
|
cls_token=None, gt=gt_combined, mae_mask_infer=gt_mask_combined) |
|
output_text, output_uncond = torch.chunk(output_combined, 2, dim=0) |
|
|
|
output_pred = output_uncond + guidance_scale * (output_text - output_uncond) |
|
if guidance_rescale > 0.0: |
|
output_pred = rescale_noise_cfg(output_pred, output_text, |
|
guidance_rescale=guidance_rescale) |
|
else: |
|
output_pred, mae_mask = unet(latents, t, text, context_mask=text_mask, |
|
cls_token=None, gt=gt, mae_mask_infer=gt_mask) |
|
|
|
latents = noise_scheduler.step(model_output=output_pred, timestep=t, |
|
sample=latents, |
|
eta=eta, generator=generator).prev_sample |
|
|
|
pred = scale_shift_re(latents, params['autoencoder']['scale'], |
|
params['autoencoder']['shift']) |
|
if gt is not None: |
|
pred[~gt_mask] = gt[~gt_mask] |
|
pred_wav = autoencoder(embedding=pred) |
|
return pred_wav |
|
|
|
|
|
@torch.no_grad() |
|
def eval_udit(autoencoder, unet, |
|
tokenizer, text_encoder, |
|
params, noise_scheduler, |
|
val_df, subset, |
|
audio_frames, mae=False, |
|
guidance_scale=3, guidance_rescale=0.0, |
|
ddim_steps=50, eta=1, random_seed=2023, |
|
device='cuda', |
|
epoch=0, save_path='logs/eval/', val_num=5): |
|
val_df = pd.read_csv(val_df) |
|
val_df = val_df[val_df['split'] == subset] |
|
if mae: |
|
val_df = val_df[val_df['audio_length'] != 0] |
|
|
|
save_path = save_path + str(epoch) + '/' |
|
os.makedirs(save_path, exist_ok=True) |
|
|
|
for i in tqdm(range(len(val_df))): |
|
row = val_df.iloc[i] |
|
text = [row['caption']] |
|
if mae: |
|
audio_path = params['data']['val_dir'] + str(row['audio_path']) |
|
gt, sr = librosa.load(audio_path, sr=params['data']['sr']) |
|
gt = gt / (np.max(np.abs(gt)) + 1e-9) |
|
sf.write(save_path + text[0] + '_gt.wav', gt, samplerate=params['data']['sr']) |
|
num_samples = 10 * sr |
|
if len(gt) < num_samples: |
|
padding = num_samples - len(gt) |
|
gt = np.pad(gt, (0, padding), 'constant') |
|
else: |
|
gt = gt[:num_samples] |
|
gt = torch.tensor(gt).unsqueeze(0).unsqueeze(1).to(device) |
|
gt = autoencoder(audio=gt) |
|
B, D, L = gt.shape |
|
mask_len = int(L * 0.2) |
|
gt_mask = torch.zeros(B, D, L).to(device) |
|
for _ in range(2): |
|
start = random.randint(0, L - mask_len) |
|
gt_mask[:, :, start:start + mask_len] = 1 |
|
gt_mask = gt_mask.bool() |
|
else: |
|
gt = None |
|
gt_mask = None |
|
|
|
pred = inference(autoencoder, unet, gt, gt_mask, |
|
tokenizer, text_encoder, |
|
params, noise_scheduler, |
|
text, neg_text=None, |
|
audio_frames=audio_frames, |
|
guidance_scale=guidance_scale, guidance_rescale=guidance_rescale, |
|
ddim_steps=ddim_steps, eta=eta, random_seed=random_seed, |
|
device=device) |
|
|
|
pred = pred.cpu().numpy().squeeze(0).squeeze(0) |
|
|
|
sf.write(save_path + text[0] + '.wav', pred, samplerate=params['data']['sr']) |
|
|
|
if i + 1 >= val_num: |
|
break |
|
|