|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint
|
|
import einops
|
|
from einops import rearrange, repeat
|
|
from inspect import isfunction
|
|
from .rotary import RotaryEmbedding
|
|
from .modules import RMSNorm
|
|
|
|
|
|
if hasattr(nn.functional, 'scaled_dot_product_attention'):
|
|
ATTENTION_MODE = 'flash'
|
|
else:
|
|
ATTENTION_MODE = 'math'
|
|
print(f'attention mode is {ATTENTION_MODE}')
|
|
|
|
|
|
def add_mask(sim, mask):
|
|
b, ndim = sim.shape[0], mask.ndim
|
|
if ndim == 3:
|
|
mask = rearrange(mask, "b n m -> b 1 n m")
|
|
if ndim == 2:
|
|
mask = repeat(mask, "n m -> b 1 n m", b=b)
|
|
max_neg_value = -torch.finfo(sim.dtype).max
|
|
sim = sim.masked_fill(~mask, max_neg_value)
|
|
return sim
|
|
|
|
|
|
def create_mask(q_shape, k_shape, device, q_mask=None, k_mask=None):
|
|
def default(val, d):
|
|
return val if val is not None else (d() if isfunction(d) else d)
|
|
b, i, j, device = q_shape[0], q_shape[-2], k_shape[-2], device
|
|
q_mask = default(q_mask, torch.ones((b, i), device=device, dtype=torch.bool))
|
|
k_mask = default(k_mask, torch.ones((b, j), device=device, dtype=torch.bool))
|
|
attn_mask = rearrange(q_mask, 'b i -> b 1 i 1') * rearrange(k_mask, 'b j -> b 1 1 j')
|
|
return attn_mask
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, dim, context_dim=None, num_heads=8,
|
|
qkv_bias=False, qk_scale=None, qk_norm=None,
|
|
attn_drop=0., proj_drop=0., rope_mode='none'):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = qk_scale or head_dim ** -0.5
|
|
|
|
if context_dim is None:
|
|
self.cross_attn = False
|
|
else:
|
|
self.cross_attn = True
|
|
|
|
context_dim = dim if context_dim is None else context_dim
|
|
|
|
self.to_q = nn.Linear(dim, dim, bias=qkv_bias)
|
|
self.to_k = nn.Linear(context_dim, dim, bias=qkv_bias)
|
|
self.to_v = nn.Linear(context_dim, dim, bias=qkv_bias)
|
|
|
|
if qk_norm is None:
|
|
self.norm_q = nn.Identity()
|
|
self.norm_k = nn.Identity()
|
|
elif qk_norm == 'layernorm':
|
|
self.norm_q = nn.LayerNorm(head_dim)
|
|
self.norm_k = nn.LayerNorm(head_dim)
|
|
elif qk_norm == 'rmsnorm':
|
|
self.norm_q = RMSNorm(head_dim)
|
|
self.norm_k = RMSNorm(head_dim)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
self.attn_drop_p = attn_drop
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
if self.cross_attn:
|
|
assert rope_mode == 'none'
|
|
self.rope_mode = rope_mode
|
|
if self.rope_mode == 'shared' or self.rope_mode == 'x_only':
|
|
self.rotary = RotaryEmbedding(dim=head_dim)
|
|
elif self.rope_mode == 'dual':
|
|
self.rotary_x = RotaryEmbedding(dim=head_dim)
|
|
self.rotary_c = RotaryEmbedding(dim=head_dim)
|
|
|
|
def _rotary(self, q, k, extras):
|
|
if self.rope_mode == 'shared':
|
|
q, k = self.rotary(q=q, k=k)
|
|
elif self.rope_mode == 'x_only':
|
|
q_x, k_x = self.rotary(q=q[:, :, extras:, :], k=k[:, :, extras:, :])
|
|
q_c, k_c = q[:, :, :extras, :], k[:, :, :extras, :]
|
|
q = torch.cat((q_c, q_x), dim=2)
|
|
k = torch.cat((k_c, k_x), dim=2)
|
|
elif self.rope_mode == 'dual':
|
|
q_x, k_x = self.rotary_x(q=q[:, :, extras:, :], k=k[:, :, extras:, :])
|
|
q_c, k_c = self.rotary_c(q=q[:, :, :extras, :], k=k[:, :, :extras, :])
|
|
q = torch.cat((q_c, q_x), dim=2)
|
|
k = torch.cat((k_c, k_x), dim=2)
|
|
elif self.rope_mode == 'none':
|
|
pass
|
|
else:
|
|
raise NotImplementedError
|
|
return q, k
|
|
|
|
def _attn(self, q, k, v, mask_binary):
|
|
if ATTENTION_MODE == 'flash':
|
|
x = F.scaled_dot_product_attention(q, k, v,
|
|
dropout_p=self.attn_drop_p,
|
|
attn_mask=mask_binary)
|
|
x = einops.rearrange(x, 'B H L D -> B L (H D)')
|
|
elif ATTENTION_MODE == 'math':
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
|
attn = add_mask(attn, mask_binary) if mask_binary is not None else attn
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.attn_drop(attn)
|
|
x = (attn @ v).transpose(1, 2)
|
|
x = einops.rearrange(x, 'B H L D -> B L (H D)')
|
|
else:
|
|
raise NotImplementedError
|
|
return x
|
|
|
|
def forward(self, x, context=None, context_mask=None, extras=0):
|
|
B, L, C = x.shape
|
|
if context is None:
|
|
context = x
|
|
|
|
q = self.to_q(x)
|
|
k = self.to_k(context)
|
|
v = self.to_v(context)
|
|
|
|
if context_mask is not None:
|
|
mask_binary = create_mask(x.shape, context.shape,
|
|
x.device, None, context_mask)
|
|
else:
|
|
mask_binary = None
|
|
|
|
q = einops.rearrange(q, 'B L (H D) -> B H L D', H=self.num_heads)
|
|
k = einops.rearrange(k, 'B L (H D) -> B H L D', H=self.num_heads)
|
|
v = einops.rearrange(v, 'B L (H D) -> B H L D', H=self.num_heads)
|
|
|
|
q = self.norm_q(q)
|
|
k = self.norm_k(k)
|
|
|
|
q, k = self._rotary(q, k, extras)
|
|
|
|
x = self._attn(q, k, v, mask_binary)
|
|
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x
|
|
|
|
|
|
class JointAttention(nn.Module):
|
|
def __init__(self, dim, num_heads=8,
|
|
qkv_bias=False, qk_scale=None, qk_norm=None,
|
|
attn_drop=0., proj_drop=0.,
|
|
rope_mode='none'):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = qk_scale or head_dim ** -0.5
|
|
|
|
self.to_qx, self.to_kx, self.to_vx = self._make_qkv_layers(dim, qkv_bias)
|
|
self.to_qc, self.to_kc, self.to_vc = self._make_qkv_layers(dim, qkv_bias)
|
|
|
|
self.norm_qx, self.norm_kx = self._make_norm_layers(qk_norm, head_dim)
|
|
self.norm_qc, self.norm_kc = self._make_norm_layers(qk_norm, head_dim)
|
|
|
|
self.attn_drop_p = attn_drop
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
|
|
self.proj_x = nn.Linear(dim, dim)
|
|
self.proj_drop_x = nn.Dropout(proj_drop)
|
|
|
|
self.proj_c = nn.Linear(dim, dim)
|
|
self.proj_drop_c = nn.Dropout(proj_drop)
|
|
|
|
self.rope_mode = rope_mode
|
|
if self.rope_mode == 'shared' or self.rope_mode == 'x_only':
|
|
self.rotary = RotaryEmbedding(dim=head_dim)
|
|
elif self.rope_mode == 'dual':
|
|
self.rotary_x = RotaryEmbedding(dim=head_dim)
|
|
self.rotary_c = RotaryEmbedding(dim=head_dim)
|
|
|
|
def _make_qkv_layers(self, dim, qkv_bias):
|
|
return (nn.Linear(dim, dim, bias=qkv_bias),
|
|
nn.Linear(dim, dim, bias=qkv_bias),
|
|
nn.Linear(dim, dim, bias=qkv_bias))
|
|
|
|
def _make_norm_layers(self, qk_norm, head_dim):
|
|
if qk_norm is None:
|
|
norm_q = nn.Identity()
|
|
norm_k = nn.Identity()
|
|
elif qk_norm == 'layernorm':
|
|
norm_q = nn.LayerNorm(head_dim)
|
|
norm_k = nn.LayerNorm(head_dim)
|
|
elif qk_norm == 'rmsnorm':
|
|
norm_q = RMSNorm(head_dim)
|
|
norm_k = RMSNorm(head_dim)
|
|
else:
|
|
raise NotImplementedError
|
|
return norm_q, norm_k
|
|
|
|
def _rotary(self, q, k, extras):
|
|
if self.rope_mode == 'shared':
|
|
q, k = self.rotary(q=q, k=k)
|
|
elif self.rope_mode == 'x_only':
|
|
q_x, k_x = self.rotary(q=q[:, :, extras:, :], k=k[:, :, extras:, :])
|
|
q_c, k_c = q[:, :, :extras, :], k[:, :, :extras, :]
|
|
q = torch.cat((q_c, q_x), dim=2)
|
|
k = torch.cat((k_c, k_x), dim=2)
|
|
elif self.rope_mode == 'dual':
|
|
q_x, k_x = self.rotary_x(q=q[:, :, extras:, :], k=k[:, :, extras:, :])
|
|
q_c, k_c = self.rotary_c(q=q[:, :, :extras, :], k=k[:, :, :extras, :])
|
|
q = torch.cat((q_c, q_x), dim=2)
|
|
k = torch.cat((k_c, k_x), dim=2)
|
|
elif self.rope_mode == 'none':
|
|
pass
|
|
else:
|
|
raise NotImplementedError
|
|
return q, k
|
|
|
|
def _attn(self, q, k, v, mask_binary):
|
|
if ATTENTION_MODE == 'flash':
|
|
x = F.scaled_dot_product_attention(q, k, v,
|
|
dropout_p=self.attn_drop_p,
|
|
attn_mask=mask_binary)
|
|
x = einops.rearrange(x, 'B H L D -> B L (H D)')
|
|
elif ATTENTION_MODE == 'math':
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
|
attn = add_mask(attn, mask_binary) if mask_binary is not None else attn
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.attn_drop(attn)
|
|
x = (attn @ v).transpose(1, 2)
|
|
x = einops.rearrange(x, 'B H L D -> B L (H D)')
|
|
else:
|
|
raise NotImplementedError
|
|
return x
|
|
|
|
def _cat_mask(self, x, context, x_mask=None, context_mask=None):
|
|
B = x.shape[0]
|
|
if x_mask is None:
|
|
x_mask = torch.ones(B, x.shape[-2], device=x.device).bool()
|
|
if context_mask is None:
|
|
context_mask = torch.ones(B, context.shape[-2], device=context.device).bool()
|
|
mask = torch.cat([context_mask, x_mask], dim=1)
|
|
return mask
|
|
|
|
def forward(self, x, context, x_mask=None, context_mask=None, extras=0):
|
|
B, Lx, C = x.shape
|
|
_, Lc, _ = context.shape
|
|
if x_mask is not None or context_mask is not None:
|
|
mask = self._cat_mask(x, context,
|
|
x_mask=x_mask,
|
|
context_mask=context_mask)
|
|
shape = [B, Lx+Lc, C]
|
|
mask_binary = create_mask(q_shape=shape, k_shape=shape,
|
|
device=x.device,
|
|
q_mask=None, k_mask=mask)
|
|
else:
|
|
mask_binary = None
|
|
|
|
qx, kx, vx = self.to_qx(x), self.to_kx(x), self.to_vx(x)
|
|
qc, kc, vc = self.to_qc(context), self.to_kc(context), self.to_vc(context)
|
|
|
|
qx, kx, vx = map(lambda t: einops.rearrange(t, 'B L (H D) -> B H L D',
|
|
H=self.num_heads), [qx, kx, vx])
|
|
qc, kc, vc = map(lambda t: einops.rearrange(t, 'B L (H D) -> B H L D',
|
|
H=self.num_heads), [qc, kc, vc])
|
|
|
|
qx, kx = self.norm_qx(qx), self.norm_kx(kx)
|
|
qc, kc = self.norm_qc(qc), self.norm_kc(kc)
|
|
|
|
q, k, v = (torch.cat([qc, qx], dim=2),
|
|
torch.cat([kc, kx], dim=2),
|
|
torch.cat([vc, vx], dim=2))
|
|
|
|
q, k = self._rotary(q, k, extras)
|
|
|
|
x = self._attn(q, k, v, mask_binary)
|
|
|
|
context, x = x[:, :Lc, :], x[:, Lc:, :]
|
|
|
|
x = self.proj_x(x)
|
|
x = self.proj_drop_x(x)
|
|
|
|
context = self.proj_c(context)
|
|
context = self.proj_drop_c(context)
|
|
|
|
return x, context |