|
import torch
|
|
import torch.nn as nn
|
|
import torch.utils.checkpoint
|
|
import einops
|
|
from einops import rearrange, repeat
|
|
from inspect import isfunction
|
|
from .rotary import RotaryEmbedding
|
|
|
|
if hasattr(nn.functional, 'scaled_dot_product_attention'):
|
|
ATTENTION_MODE = 'flash'
|
|
else:
|
|
ATTENTION_MODE = 'math'
|
|
print(f'attention mode is {ATTENTION_MODE}')
|
|
|
|
|
|
def add_mask(sim, mask):
|
|
b, ndim = sim.shape[0], mask.ndim
|
|
if ndim == 3:
|
|
mask = rearrange(mask, "b n m -> b 1 n m")
|
|
if ndim == 2:
|
|
mask = repeat(mask, "n m -> b 1 n m", b=b)
|
|
max_neg_value = -torch.finfo(sim.dtype).max
|
|
sim = sim.masked_fill(~mask, max_neg_value)
|
|
return sim
|
|
|
|
|
|
def create_mask(q, k, q_mask=None, k_mask=None):
|
|
def default(val, d):
|
|
return val if val is not None else (d() if isfunction(d) else d)
|
|
|
|
b, i, j, device = q.shape[0], q.shape[-2], k.shape[-2], q.device
|
|
q_mask = default(q_mask, torch.ones((b, i), device=device, dtype=torch.bool))
|
|
k_mask = default(k_mask, torch.ones((b, j), device=device, dtype=torch.bool))
|
|
attn_mask = rearrange(q_mask, 'b i -> b 1 i 1') * rearrange(k_mask, 'b j -> b 1 1 j')
|
|
return attn_mask
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, dim, context_dim=None, num_heads=8, qkv_bias=False, qk_scale=None,
|
|
attn_drop=0., proj_drop=0., use_rope=False):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = qk_scale or head_dim ** -0.5
|
|
|
|
context_dim = dim if context_dim is None else context_dim
|
|
|
|
self.to_q = nn.Linear(dim, dim, bias=qkv_bias)
|
|
self.to_k = nn.Linear(context_dim, dim, bias=qkv_bias)
|
|
self.to_v = nn.Linear(context_dim, dim, bias=qkv_bias)
|
|
self.attn_drop_p = attn_drop
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
self.use_rope = use_rope
|
|
if self.use_rope:
|
|
self.rotary = RotaryEmbedding(dim=head_dim)
|
|
|
|
def forward(self, x, context=None, context_mask=None):
|
|
B, L, C = x.shape
|
|
q = self.to_q(x)
|
|
if context is None:
|
|
context = x
|
|
else:
|
|
assert self.use_rope is False
|
|
|
|
k = self.to_k(context)
|
|
v = self.to_v(context)
|
|
|
|
if context_mask is not None:
|
|
mask_binary = create_mask(x, context, None, context_mask)
|
|
else:
|
|
mask_binary = None
|
|
|
|
q = einops.rearrange(q, 'B L (H D) -> B H L D', H=self.num_heads).float()
|
|
k = einops.rearrange(k, 'B L (H D) -> B H L D', H=self.num_heads).float()
|
|
v = einops.rearrange(v, 'B L (H D) -> B H L D', H=self.num_heads).float()
|
|
|
|
if self.use_rope:
|
|
q, k = self.rotary(q=q, k=k)
|
|
|
|
if ATTENTION_MODE == 'flash':
|
|
x = torch.nn.functional.scaled_dot_product_attention(q, k, v,
|
|
dropout_p=self.attn_drop_p,
|
|
attn_mask=mask_binary)
|
|
x = einops.rearrange(x, 'B H L D -> B L (H D)')
|
|
elif ATTENTION_MODE == 'math':
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
|
attn = add_mask(attn, mask_binary) if mask_binary is not None else attn
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.attn_drop(attn)
|
|
x = (attn @ v).transpose(1, 2).reshape(B, L, C)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x |