|
import torch
|
|
from typing import Tuple
|
|
from rotary import RotaryEmbedding
|
|
import time
|
|
|
|
|
|
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
|
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
|
t = torch.arange(end, device=freqs.device, dtype=torch.float32)
|
|
freqs = torch.outer(t, freqs)
|
|
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
|
return freqs_cis
|
|
|
|
|
|
def reshape_for_broadcast(freqs_cis: torch.Tensor,
|
|
x: torch.Tensor,):
|
|
ndim = x.ndim
|
|
assert 0 <= 1 < ndim
|
|
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
|
|
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
|
return freqs_cis.view(*shape)
|
|
|
|
|
|
def compute_rope(q, freqs_cis):
|
|
return q * freqs_cis
|
|
|
|
|
|
def apply_rotary_emb(
|
|
xq: torch.Tensor,
|
|
xk: torch.Tensor,
|
|
freqs_cis: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
|
|
|
xq1, xq2 = xq.chunk(2, dim=-1)
|
|
xq_ = torch.view_as_complex(torch.stack((xq1, xq2), dim=-1).float())
|
|
|
|
xk1, xk2 = xk.chunk(2, dim=-1)
|
|
xk_ = torch.view_as_complex(torch.stack((xk1, xk2), dim=-1).float())
|
|
|
|
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
|
|
xq_out = torch.view_as_real(compute_rope(xq_, freqs_cis)).flatten(3)
|
|
xk_out = torch.view_as_real(compute_rope(xk_, freqs_cis)).flatten(3)
|
|
return xq_out.type_as(xq), xk_out.type_as(xk)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
freq_cis = precompute_freqs_cis(4, 5).cuda()
|
|
x = torch.rand(1, 5, 1, 4).cuda()
|
|
y = torch.rand(1, 5, 1, 4).cuda()
|
|
|
|
|
|
start_time = time.time()
|
|
for _ in range(20000):
|
|
x1, y1 = apply_rotary_emb(x, y, freq_cis)
|
|
end_time = time.time()
|
|
print(f"Method 1 time cost: {end_time - start_time} seconds")
|
|
|
|
|
|
x = x.permute(0, 2, 1, 3)
|
|
y = y.permute(0, 2, 1, 3)
|
|
rope = RotaryEmbedding(4).cuda()
|
|
|
|
|
|
start_time = time.time()
|
|
for _ in range(20000):
|
|
x2, y2 = rope(x, y)
|
|
end_time = time.time()
|
|
print(f"Method 2 time cost: {end_time - start_time} seconds")
|
|
|
|
|
|
print(x1)
|
|
print(x2) |