|
import torch
|
|
|
|
"this rope is faster than llama rope with jit script"
|
|
|
|
|
|
def rotate_half(x):
|
|
x1, x2 = x.chunk(2, dim=-1)
|
|
return torch.cat((-x2, x1), dim=-1)
|
|
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(x, cos, sin):
|
|
|
|
|
|
cos = cos[:, :, : x.shape[-2], :]
|
|
sin = sin[:, :, : x.shape[-2], :]
|
|
return (x * cos) + (rotate_half(x) * sin)
|
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module):
|
|
"""
|
|
The rotary position embeddings from RoFormer_ (Su et. al).
|
|
A crucial insight from the method is that the query and keys are
|
|
transformed by rotation matrices which depend on the relative positions.
|
|
|
|
Other implementations are available in the Rotary Transformer repo_ and in
|
|
GPT-NeoX_, GPT-NeoX was an inspiration
|
|
|
|
.. _RoFormer: https://arxiv.org/abs/2104.09864
|
|
.. _repo: https://github.com/ZhuiyiTechnology/roformer
|
|
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
|
|
|
|
|
|
.. warning: Please note that this embedding is not registered on purpose, as it is transformative
|
|
(it does not create the embedding dimension) and will likely be picked up (imported) on a ad-hoc basis
|
|
"""
|
|
|
|
def __init__(self, dim: int):
|
|
super().__init__()
|
|
|
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
|
self.register_buffer("inv_freq", inv_freq)
|
|
self._seq_len_cached = None
|
|
self._cos_cached = None
|
|
self._sin_cached = None
|
|
|
|
def _update_cos_sin_tables(self, x, seq_dimension=-2):
|
|
|
|
seq_len = x.shape[seq_dimension]
|
|
|
|
|
|
|
|
|
|
if (
|
|
seq_len != self._seq_len_cached
|
|
or self._cos_cached.device != x.device
|
|
or self._cos_cached.dtype != x.dtype
|
|
):
|
|
self._seq_len_cached = seq_len
|
|
t = torch.arange(
|
|
x.shape[seq_dimension], device=x.device, dtype=torch.float32
|
|
)
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq.to(x.dtype))
|
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
|
|
|
self._cos_cached = emb.cos()[None, None, :, :].to(x.dtype)
|
|
self._sin_cached = emb.sin()[None, None, :, :].to(x.dtype)
|
|
|
|
return self._cos_cached, self._sin_cached
|
|
|
|
def forward(self, q, k):
|
|
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(
|
|
q.float(), seq_dimension=-2
|
|
)
|
|
if k is not None:
|
|
return (
|
|
apply_rotary_pos_emb(q.float(),
|
|
self._cos_cached,
|
|
self._sin_cached).type_as(q),
|
|
apply_rotary_pos_emb(k.float(),
|
|
self._cos_cached,
|
|
self._sin_cached).type_as(k),
|
|
)
|
|
else:
|
|
return (
|
|
apply_rotary_pos_emb(q.float(),
|
|
self._cos_cached,
|
|
self._sin_cached).type_as(q),
|
|
None
|
|
) |