|
import numpy as np
|
|
import torch
|
|
from typing import Optional, Tuple
|
|
|
|
|
|
def compute_mask_indices(
|
|
shape: Tuple[int, int],
|
|
padding_mask: Optional[torch.Tensor],
|
|
mask_prob: float,
|
|
mask_length: int,
|
|
mask_type: str = "static",
|
|
mask_other: float = 0.0,
|
|
min_masks: int = 0,
|
|
no_overlap: bool = False,
|
|
min_space: int = 0,
|
|
) -> np.ndarray:
|
|
"""
|
|
Computes random mask spans for a given shape
|
|
|
|
Args:
|
|
shape: the the shape for which to compute masks.
|
|
should be of size 2 where first element is batch size and 2nd is timesteps
|
|
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
|
|
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
|
|
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
|
|
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
|
|
mask_type: how to compute mask lengths
|
|
static = fixed size
|
|
uniform = sample from uniform distribution [mask_other, mask_length*2]
|
|
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
|
|
poisson = sample from possion distribution with lambda = mask length
|
|
min_masks: minimum number of masked spans
|
|
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
|
|
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
|
|
"""
|
|
|
|
bsz, all_sz = shape
|
|
mask = np.full((bsz, all_sz), False)
|
|
|
|
|
|
mask_prob = np.array(mask_prob)
|
|
|
|
|
|
all_num_mask = np.floor(mask_prob * all_sz / float(mask_length) + np.random.rand(bsz)).astype(int)
|
|
|
|
|
|
all_num_mask = np.maximum(min_masks, all_num_mask)
|
|
|
|
mask_idcs = []
|
|
for i in range(bsz):
|
|
if padding_mask is not None:
|
|
sz = all_sz - padding_mask[i].long().sum().item()
|
|
num_mask = int(
|
|
|
|
mask_prob * sz / float(mask_length)
|
|
+ np.random.rand()
|
|
)
|
|
num_mask = max(min_masks, num_mask)
|
|
else:
|
|
sz = all_sz
|
|
num_mask = all_num_mask[i]
|
|
|
|
if mask_type == "static":
|
|
lengths = np.full(num_mask, mask_length)
|
|
elif mask_type == "uniform":
|
|
lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask)
|
|
elif mask_type == "normal":
|
|
lengths = np.random.normal(mask_length, mask_other, size=num_mask)
|
|
lengths = [max(1, int(round(x))) for x in lengths]
|
|
elif mask_type == "poisson":
|
|
lengths = np.random.poisson(mask_length, size=num_mask)
|
|
lengths = [int(round(x)) for x in lengths]
|
|
else:
|
|
raise Exception("unknown mask selection " + mask_type)
|
|
|
|
if sum(lengths) == 0:
|
|
lengths[0] = min(mask_length, sz - 1)
|
|
|
|
if no_overlap:
|
|
mask_idc = []
|
|
|
|
def arrange(s, e, length, keep_length):
|
|
span_start = np.random.randint(s, e - length)
|
|
mask_idc.extend(span_start + i for i in range(length))
|
|
|
|
new_parts = []
|
|
if span_start - s - min_space >= keep_length:
|
|
new_parts.append((s, span_start - min_space + 1))
|
|
if e - span_start - keep_length - min_space > keep_length:
|
|
new_parts.append((span_start + length + min_space, e))
|
|
return new_parts
|
|
|
|
parts = [(0, sz)]
|
|
min_length = min(lengths)
|
|
for length in sorted(lengths, reverse=True):
|
|
lens = np.fromiter(
|
|
(e - s if e - s >= length + min_space else 0 for s, e in parts),
|
|
np.int,
|
|
)
|
|
l_sum = np.sum(lens)
|
|
if l_sum == 0:
|
|
break
|
|
probs = lens / np.sum(lens)
|
|
c = np.random.choice(len(parts), p=probs)
|
|
s, e = parts.pop(c)
|
|
parts.extend(arrange(s, e, length, min_length))
|
|
mask_idc = np.asarray(mask_idc)
|
|
else:
|
|
min_len = min(lengths)
|
|
if sz - min_len <= num_mask:
|
|
min_len = sz - num_mask - 1
|
|
|
|
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False)
|
|
|
|
mask_idc = np.asarray(
|
|
[
|
|
mask_idc[j] + offset
|
|
for j in range(len(mask_idc))
|
|
for offset in range(lengths[j])
|
|
]
|
|
)
|
|
|
|
mask_idcs.append(np.unique(mask_idc[mask_idc < sz]))
|
|
|
|
for i, mask_idc in enumerate(mask_idcs):
|
|
|
|
|
|
mask[i, mask_idc] = True
|
|
|
|
return torch.tensor(mask)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
mask = compute_mask_indices(
|
|
shape=[4, 500],
|
|
padding_mask=None,
|
|
mask_prob=[0.65, 0.5, 0.65, 0.65],
|
|
mask_length=10,
|
|
mask_type="static",
|
|
mask_other=0.0,
|
|
min_masks=1,
|
|
no_overlap=False,
|
|
min_space=0,
|
|
)
|
|
print(mask)
|
|
print(mask.sum(dim=1)) |