|
import random |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import FluxPipeline |
|
from PIL import Image |
|
from diffusers.utils import export_to_gif |
|
|
|
HEIGHT = 256 |
|
WIDTH = 1024 |
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
pipe = FluxPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-dev", |
|
torch_dtype=torch.bfloat16 |
|
).to(device) |
|
|
|
def split_image(input_image, num_splits=4): |
|
|
|
output_images = [] |
|
|
|
|
|
for i in range(num_splits): |
|
left = i * 256 |
|
right = (i + 1) * 256 |
|
box = (left, 0, right, 256) |
|
output_images.append(input_image.crop(box)) |
|
|
|
return output_images |
|
|
|
|
|
def predict(prompt, seed=42, randomize_seed=False, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): |
|
prompt_template = f""" |
|
A side by side 4 frame image showing consecutive stills from a looped gif moving from left to right. |
|
The gif is of {prompt}. |
|
""" |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
image = pipe( |
|
prompt=prompt_template, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
num_images_per_prompt=1, |
|
generator=torch.Generator("cpu").manual_seed(seed), |
|
height=HEIGHT, |
|
width=WIDTH |
|
).images[0] |
|
|
|
return export_to_gif(split_image(image, 4), "flux.gif", fps=4), image, seed |
|
|
|
demo = gr.Interface(fn=predict, inputs="text", outputs="image") |
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
#stills{max-height:160px} |
|
""" |
|
examples = [ |
|
"a cat waving its paws in the air", |
|
"a panda moving their hips from side to side", |
|
"a flower going through the process of blooming" |
|
] |
|
|
|
with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown("# FLUX Gif Generator") |
|
gr.Markdown("Create GIFs with Flux-dev.") |
|
gr.Markdown("For better results include a description of the motion in your prompt") |
|
with gr.Row(): |
|
prompt = gr.Text(label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt") |
|
submit = gr.Button("Submit", scale=0) |
|
|
|
output = gr.Image(label="GIF", show_label=False) |
|
output_stills = gr.Image(label="stills", show_label=False, elem_id="stills") |
|
with gr.Accordion("Advanced Settings", open=False): |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=1, |
|
maximum=15, |
|
step=0.1, |
|
value=3.5, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=28, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
fn=predict, |
|
inputs=[prompt], |
|
outputs=[output, output_stills, seed], |
|
cache_examples="lazy" |
|
) |
|
gr.on( |
|
triggers=[submit.click, prompt.submit], |
|
fn=predict, |
|
inputs=[prompt, seed, randomize_seed, guidance_scale, num_inference_steps], |
|
outputs = [output, output_stills, seed] |
|
) |
|
|
|
demo.launch() |