import streamlit as st import openai from openai import OpenAI import os, base64, cv2, glob from moviepy.editor import VideoFileClip from datetime import datetime import pytz from audio_recorder_streamlit import audio_recorder openai.api_key, openai.organization = os.getenv('OPENAI_API_KEY'), os.getenv('OPENAI_ORG_ID') client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID')) MODEL = "gpt-4o-2024-05-13" if 'messages' not in st.session_state: st.session_state.messages = [] def generate_filename(prompt, file_type): central = pytz.timezone('US/Central') safe_date_time = datetime.now(central).strftime("%m%d_%H%M") safe_prompt = "".join(x for x in prompt.replace(" ", "_").replace("\n", "_") if x.isalnum() or x == "_")[:90] return f"{safe_date_time}_{safe_prompt}.{file_type}" def create_file(filename, prompt, response, should_save=True): if should_save and os.path.splitext(filename)[1] in ['.txt', '.htm', '.md']: with open(os.path.splitext(filename)[0] + ".md", 'w', encoding='utf-8') as file: file.write(response) def process_text(text_input): if text_input: st.session_state.messages.append({"role": "user", "content": text_input}) with st.chat_message("user"): st.markdown(text_input) completion = client.chat.completions.create(model=MODEL, messages=[{"role": m["role"], "content": m["content"]} for m in st.session_state.messages], stream=False) return_text = completion.choices[0].message.content with st.chat_message("assistant"): st.markdown(return_text) filename = generate_filename(text_input, "md") create_file(filename, text_input, return_text) st.session_state.messages.append({"role": "assistant", "content": return_text}) def process_text2(MODEL='gpt-4o-2024-05-13', text_input='What is 2+2 and what is an imaginary number'): if text_input: st.session_state.messages.append({"role": "user", "content": text_input}) completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages) return_text = completion.choices[0].message.content st.write("Assistant: " + return_text) filename = generate_filename(text_input, "md") create_file(filename, text_input, return_text, should_save=True) return return_text def save_image(image_input, filename): with open(filename, "wb") as f: f.write(image_input.getvalue()) return filename def process_image(image_input): if image_input: with st.chat_message("user"): st.markdown('Processing image: ' + image_input.name) base64_image = base64.b64encode(image_input.read()).decode("utf-8") st.session_state.messages.append({"role": "user", "content": [{"type": "text", "text": "Help me understand what is in this picture and list ten facts as markdown outline with appropriate emojis that describes what you see."}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}]}) response = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, temperature=0.0) image_response = response.choices[0].message.content with st.chat_message("assistant"): st.markdown(image_response) filename_md, filename_img = generate_filename(image_input.name + '- ' + image_response, "md"), image_input.name create_file(filename_md, image_response, '', True) with open(filename_md, "w", encoding="utf-8") as f: f.write(image_response) save_image(image_input, filename_img) st.session_state.messages.append({"role": "assistant", "content": image_response}) return image_response def process_audio(audio_input): if audio_input: st.session_state.messages.append({"role": "user", "content": audio_input}) transcription = client.audio.transcriptions.create(model="whisper-1", file=audio_input) response = client.chat.completions.create(model=MODEL, messages=[{"role": "system", "content":"You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."}, {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription.text}"}]}], temperature=0) audio_response = response.choices[0].message.content with st.chat_message("assistant"): st.markdown(audio_response) filename = generate_filename(transcription.text, "md") create_file(filename, transcription.text, audio_response, should_save=True) st.session_state.messages.append({"role": "assistant", "content": audio_response}) def process_audio_and_video(video_input): if video_input is not None: video_path = save_video(video_input) base64Frames, audio_path = process_video(video_path, seconds_per_frame=1) transcript = process_audio_for_video(video_input) st.session_state.messages.append({"role": "user", "content": ["These are the frames from the video.", *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), {"type": "text", "text": f"The audio transcription is: {transcript}"}]}) response = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, temperature=0) video_response = response.choices[0].message.content with st.chat_message("assistant"): st.markdown(video_response) filename = generate_filename(transcript, "md") create_file(filename, transcript, video_response, should_save=True) st.session_state.messages.append({"role": "assistant", "content": video_response}) def process_audio_for_video(video_input): if video_input: st.session_state.messages.append({"role": "user", "content": video_input}) transcription = client.audio.transcriptions.create(model="whisper-1", file=video_input) response = client.chat.completions.create(model=MODEL, messages=[{"role": "system", "content":"You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."}, {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription}"}]}], temperature=0) video_response = response.choices[0].message.content with st.chat_message("assistant"): st.markdown(video_response) filename = generate_filename(transcription, "md") create_file(filename, transcription, video_response, should_save=True) st.session_state.messages.append({"role": "assistant", "content": video_response}) return video_response def save_video(video_file): with open(video_file.name, "wb") as f: f.write(video_file.getbuffer()) return video_file.name def process_video(video_path, seconds_per_frame=2): base64Frames, base_video_path = [], os.path.splitext(video_path)[0] video, total_frames, fps = cv2.VideoCapture(video_path), int(cv2.VideoCapture(video_path).get(cv2.CAP_PROP_FRAME_COUNT)), cv2.VideoCapture(video_path).get(cv2.CAP_PROP_FPS) curr_frame, frames_to_skip = 0, int(fps * seconds_per_frame) while curr_frame < total_frames - 1: video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame) success, frame = video.read() if not success: break _, buffer = cv2.imencode(".jpg", frame) base64Frames.append(base64.b64encode(buffer).decode("utf-8")) curr_frame += frames_to_skip video.release() audio_path = f"{base_video_path}.mp3" clip = VideoFileClip(video_path) clip.audio.write_audiofile(audio_path, bitrate="32k") clip.audio.close() clip.close() print(f"Extracted {len(base64Frames)} frames") print(f"Extracted audio to {audio_path}") return base64Frames, audio_path def save_and_play_audio(audio_recorder): audio_bytes = audio_recorder(key='audio_recorder') if audio_bytes: filename = generate_filename("Recording", "wav") with open(filename, 'wb') as f: f.write(audio_bytes) st.audio(audio_bytes, format="audio/wav") return filename return None def main(): st.markdown("##### GPT-4o Omni Model: Text, Audio, Image, & Video") option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video")) if option == "Text": text_input = st.chat_input("Enter your text:") if text_input: process_text(text_input) elif option == "Image": image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) process_image(image_input) elif option == "Audio": audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"]) process_audio(audio_input) elif option == "Video": video_input = st.file_uploader("Upload a video file", type=["mp4"]) process_audio_and_video(video_input) all_files = sorted(glob.glob("*.md"), key=lambda x: (os.path.splitext(x)[1], x), reverse=True) all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] st.sidebar.title("File Gallery") for file in all_files: with st.sidebar.expander(file), open(file, "r", encoding="utf-8") as f: st.code(f.read(), language="markdown") if prompt := st.chat_input("GPT-4o Multimodal ChatBot - What can I help you with?"): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.markdown(prompt) with st.chat_message("assistant"): completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, stream=True) response = process_text2(text_input=prompt) st.session_state.messages.append({"role": "assistant", "content": response}) filename = save_and_play_audio(audio_recorder) if filename is not None: transcript = transcribe_canary(filename) result = search_arxiv(transcript) st.session_state.messages.append({"role": "user", "content": transcript}) with st.chat_message("user"): st.markdown(transcript) with st.chat_message("assistant"): completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, stream=True) response = process_text2(text_input=prompt) st.session_state.messages.append({"role": "assistant", "content": response}) if __name__ == "__main__": main()