ricklamers commited on
Commit
1352961
1 Parent(s): 79e055d

feat: add tool use

Browse files
Files changed (2) hide show
  1. app.py +88 -54
  2. requirements.txt +3 -1
app.py CHANGED
@@ -1,63 +1,97 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  demo = gr.ChatInterface(
46
  respond,
47
  additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
  ],
 
 
59
  )
60
 
61
-
62
  if __name__ == "__main__":
63
  demo.launch()
 
1
  import gradio as gr
2
+ import json
3
+ import os
4
+ import numexpr
5
+ from groq import Groq
6
+ from groq.types.chat.chat_completion_tool_param import ChatCompletionToolParam
7
+
8
+ MODEL = "llama3-groq-8b-8192-tool-use-preview"
9
+ client = Groq(api_key=os.environ["GROQ_API_KEY"])
10
+
11
+ def evaluate_math_expression(expression: str):
12
+ return json.dumps(numexpr.evaluate(expression).tolist())
13
+
14
+ calculator_tool: ChatCompletionToolParam = {
15
+ "type": "function",
16
+ "function": {
17
+ "name": "evaluate_math_expression",
18
+ "description":
19
+ "Calculator tool: use this for evaluating numeric expressions with Python. Ensure the expression is valid Python syntax (e.g., use '**' for exponentiation, not '^').",
20
+ "parameters": {
21
+ "type": "object",
22
+ "properties": {
23
+ "expression": {
24
+ "type": "string",
25
+ "description": "The mathematical expression to evaluate. Must be valid Python syntax.",
26
+ },
27
+ },
28
+ "required": ["expression"],
29
+ },
30
+ },
31
+ }
32
+
33
+ tools = [calculator_tool]
34
+
35
+ def call_function(tool_call, available_functions):
36
+ function_name = tool_call.function.name
37
+ if function_name not in available_functions:
38
+ return {
39
+ "tool_call_id": tool_call.id,
40
+ "role": "tool",
41
+ "content": f"Function {function_name} does not exist.",
42
+ }
43
+ function_to_call = available_functions[function_name]
44
+ function_args = json.loads(tool_call.function.arguments)
45
+ function_response = function_to_call(**function_args)
46
+ return {
47
+ "tool_call_id": tool_call.id,
48
+ "role": "tool",
49
+ "name": function_name,
50
+ "content": json.dumps(function_response),
51
+ }
52
+
53
+ def get_model_response(messages):
54
+ return client.chat.completions.create(
55
+ model=MODEL,
56
+ messages=messages,
57
+ tools=tools,
58
+ temperature=0.5,
59
+ top_p=0.65,
60
+ max_tokens=4096,
61
+ )
62
+
63
+ def respond(message, history, system_message):
64
+ conversation = [{"role": "system", "content": system_message}]
65
+ for human, assistant in history:
66
+ conversation.append({"role": "user", "content": human})
67
+ conversation.append({"role": "assistant", "content": assistant})
68
+ conversation.append({"role": "user", "content": message})
69
+
70
+ available_functions = {
71
+ "evaluate_math_expression": evaluate_math_expression,
72
+ }
73
+
74
+ while True:
75
+ response = get_model_response(conversation)
76
+ response_message = response.choices[0].message
77
+ conversation.append(response_message)
78
+
79
+ if not response_message.tool_calls and response_message.content is not None:
80
+ return response_message.content
81
+
82
+ if response_message.tool_calls is not None:
83
+ for tool_call in response_message.tool_calls:
84
+ function_response = call_function(tool_call, available_functions)
85
+ conversation.append(function_response)
86
+
87
  demo = gr.ChatInterface(
88
  respond,
89
  additional_inputs=[
90
+ gr.Textbox(value="You are a friendly Chatbot with access to a calculator. Don't mention that we are using functions defined in Python.", label="System message"),
 
 
 
 
 
 
 
 
 
91
  ],
92
+ title="Groq Tool Use Chat",
93
+ description="This chatbot uses the Groq LLM with tool use capabilities, including a calculator function.",
94
  )
95
 
 
96
  if __name__ == "__main__":
97
  demo.launch()
requirements.txt CHANGED
@@ -1 +1,3 @@
1
- huggingface_hub==0.22.2
 
 
 
1
+ huggingface_hub==0.22.2
2
+ groq
3
+ numexpr