Spaces:
Runtime error
Runtime error
init
Browse files- app.py +249 -0
- core/__init__.py +0 -0
- core/__pycache__/__init__.cpython-39.pyc +0 -0
- core/__pycache__/attention.cpython-39.pyc +0 -0
- core/__pycache__/gs.cpython-39.pyc +0 -0
- core/__pycache__/models.cpython-39.pyc +0 -0
- core/__pycache__/options.cpython-39.pyc +0 -0
- core/__pycache__/provider_objaverse.cpython-39.pyc +0 -0
- core/__pycache__/unet.cpython-39.pyc +0 -0
- core/__pycache__/utils.cpython-39.pyc +0 -0
- core/attention.py +156 -0
- core/gs.py +190 -0
- core/models.py +174 -0
- core/options.py +120 -0
- core/provider_objaverse.py +172 -0
- core/unet.py +319 -0
- core/utils.py +109 -0
- data_test/anya_rgba.png +0 -0
- data_test/bird_rgba.png +0 -0
- data_test/catstatue_rgba.png +0 -0
- mvdream/__pycache__/mv_unet.cpython-39.pyc +0 -0
- mvdream/__pycache__/pipeline_mvdream.cpython-39.pyc +0 -0
- mvdream/mv_unet.py +1005 -0
- mvdream/pipeline_mvdream.py +559 -0
- requirements.txt +30 -0
app.py
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tyro
|
3 |
+
import imageio
|
4 |
+
import numpy as np
|
5 |
+
import tqdm
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import torchvision.transforms.functional as TF
|
10 |
+
from safetensors.torch import load_file
|
11 |
+
import rembg
|
12 |
+
import gradio as gr
|
13 |
+
|
14 |
+
import kiui
|
15 |
+
from kiui.op import recenter
|
16 |
+
from kiui.cam import orbit_camera
|
17 |
+
|
18 |
+
from core.options import AllConfigs, Options
|
19 |
+
from core.models import LGM
|
20 |
+
from mvdream.pipeline_mvdream import MVDreamPipeline
|
21 |
+
|
22 |
+
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
|
23 |
+
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
|
24 |
+
GRADIO_VIDEO_PATH = 'gradio_output.mp4'
|
25 |
+
GRADIO_PLY_PATH = 'gradio_output.ply'
|
26 |
+
|
27 |
+
opt = tyro.cli(AllConfigs)
|
28 |
+
|
29 |
+
# model
|
30 |
+
model = LGM(opt)
|
31 |
+
|
32 |
+
# resume pretrained checkpoint
|
33 |
+
if opt.resume is not None:
|
34 |
+
if opt.resume.endswith('safetensors'):
|
35 |
+
ckpt = load_file(opt.resume, device='cpu')
|
36 |
+
else:
|
37 |
+
ckpt = torch.load(opt.resume, map_location='cpu')
|
38 |
+
model.load_state_dict(ckpt, strict=False)
|
39 |
+
print(f'[INFO] Loaded checkpoint from {opt.resume}')
|
40 |
+
else:
|
41 |
+
print(f'[WARN] model randomly initialized, are you sure?')
|
42 |
+
|
43 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
44 |
+
model = model.half().to(device)
|
45 |
+
model.eval()
|
46 |
+
|
47 |
+
tan_half_fov = np.tan(0.5 * np.deg2rad(opt.fovy))
|
48 |
+
proj_matrix = torch.zeros(4, 4, dtype=torch.float32, device=device)
|
49 |
+
proj_matrix[0, 0] = 1 / tan_half_fov
|
50 |
+
proj_matrix[1, 1] = 1 / tan_half_fov
|
51 |
+
proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear)
|
52 |
+
proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear)
|
53 |
+
proj_matrix[2, 3] = 1
|
54 |
+
|
55 |
+
# load dreams
|
56 |
+
pipe_text = MVDreamPipeline.from_pretrained(
|
57 |
+
'ashawkey/mvdream-sd2.1-diffusers', # remote weights
|
58 |
+
torch_dtype=torch.float16,
|
59 |
+
trust_remote_code=True,
|
60 |
+
# local_files_only=True,
|
61 |
+
)
|
62 |
+
pipe_text = pipe_text.to(device)
|
63 |
+
|
64 |
+
pipe_image = MVDreamPipeline.from_pretrained(
|
65 |
+
"ashawkey/imagedream-ipmv-diffusers", # remote weights
|
66 |
+
torch_dtype=torch.float16,
|
67 |
+
trust_remote_code=True,
|
68 |
+
# local_files_only=True,
|
69 |
+
)
|
70 |
+
pipe_image = pipe_image.to(device)
|
71 |
+
|
72 |
+
# load rembg
|
73 |
+
bg_remover = rembg.new_session()
|
74 |
+
|
75 |
+
# process function
|
76 |
+
def process(input_image, prompt, prompt_neg='', input_elevation=0, input_num_steps=30, input_seed=42):
|
77 |
+
|
78 |
+
# seed
|
79 |
+
kiui.seed_everything(input_seed)
|
80 |
+
|
81 |
+
os.makedirs(opt.workspace, exist_ok=True)
|
82 |
+
output_video_path = os.path.join(opt.workspace, GRADIO_VIDEO_PATH)
|
83 |
+
output_ply_path = os.path.join(opt.workspace, GRADIO_PLY_PATH)
|
84 |
+
|
85 |
+
# text-conditioned
|
86 |
+
if input_image is None:
|
87 |
+
mv_image_uint8 = pipe_text(prompt, negative_prompt=prompt_neg, num_inference_steps=input_num_steps, guidance_scale=7.5, elevation=input_elevation)
|
88 |
+
mv_image_uint8 = (mv_image_uint8 * 255).astype(np.uint8)
|
89 |
+
# bg removal
|
90 |
+
mv_image = []
|
91 |
+
for i in range(4):
|
92 |
+
image = rembg.remove(mv_image_uint8[i], session=bg_remover) # [H, W, 4]
|
93 |
+
# to white bg
|
94 |
+
image = image.astype(np.float32) / 255
|
95 |
+
image = recenter(image, image[..., 0] > 0, border_ratio=0.2)
|
96 |
+
image = image[..., :3] * image[..., -1:] + (1 - image[..., -1:])
|
97 |
+
mv_image.append(image)
|
98 |
+
# image-conditioned (may also input text, but no text usually works too)
|
99 |
+
else:
|
100 |
+
input_image = np.array(input_image) # uint8
|
101 |
+
# bg removal
|
102 |
+
carved_image = rembg.remove(input_image, session=bg_remover) # [H, W, 4]
|
103 |
+
mask = carved_image[..., -1] > 0
|
104 |
+
image = recenter(carved_image, mask, border_ratio=0.2)
|
105 |
+
image = image.astype(np.float32) / 255.0
|
106 |
+
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
|
107 |
+
mv_image = pipe_image(prompt, image, negative_prompt=prompt_neg, num_inference_steps=input_num_steps, guidance_scale=5.0, elevation=input_elevation)
|
108 |
+
|
109 |
+
mv_image_grid = np.concatenate([
|
110 |
+
np.concatenate([mv_image[1], mv_image[2]], axis=1),
|
111 |
+
np.concatenate([mv_image[3], mv_image[0]], axis=1),
|
112 |
+
], axis=0)
|
113 |
+
|
114 |
+
# generate gaussians
|
115 |
+
input_image = np.stack([mv_image[1], mv_image[2], mv_image[3], mv_image[0]], axis=0) # [4, 256, 256, 3], float32
|
116 |
+
input_image = torch.from_numpy(input_image).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256]
|
117 |
+
input_image = F.interpolate(input_image, size=(opt.input_size, opt.input_size), mode='bilinear', align_corners=False)
|
118 |
+
input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
|
119 |
+
|
120 |
+
rays_embeddings = model.prepare_default_rays(device, elevation=input_elevation)
|
121 |
+
input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W]
|
122 |
+
|
123 |
+
with torch.no_grad():
|
124 |
+
with torch.autocast(device_type='cuda', dtype=torch.float16):
|
125 |
+
# generate gaussians
|
126 |
+
gaussians = model.forward_gaussians(input_image)
|
127 |
+
|
128 |
+
# save gaussians
|
129 |
+
model.gs.save_ply(gaussians, output_ply_path)
|
130 |
+
|
131 |
+
# render 360 video
|
132 |
+
images = []
|
133 |
+
elevation = 0
|
134 |
+
if opt.fancy_video:
|
135 |
+
azimuth = np.arange(0, 720, 4, dtype=np.int32)
|
136 |
+
for azi in tqdm.tqdm(azimuth):
|
137 |
+
|
138 |
+
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
|
139 |
+
|
140 |
+
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
|
141 |
+
|
142 |
+
# cameras needed by gaussian rasterizer
|
143 |
+
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
|
144 |
+
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
|
145 |
+
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
|
146 |
+
|
147 |
+
scale = min(azi / 360, 1)
|
148 |
+
|
149 |
+
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=scale)['image']
|
150 |
+
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
|
151 |
+
else:
|
152 |
+
azimuth = np.arange(0, 360, 2, dtype=np.int32)
|
153 |
+
for azi in tqdm.tqdm(azimuth):
|
154 |
+
|
155 |
+
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
|
156 |
+
|
157 |
+
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
|
158 |
+
|
159 |
+
# cameras needed by gaussian rasterizer
|
160 |
+
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
|
161 |
+
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
|
162 |
+
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
|
163 |
+
|
164 |
+
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=1)['image']
|
165 |
+
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
|
166 |
+
|
167 |
+
images = np.concatenate(images, axis=0)
|
168 |
+
imageio.mimwrite(output_video_path, images, fps=30)
|
169 |
+
|
170 |
+
return mv_image_grid, output_video_path, output_ply_path
|
171 |
+
|
172 |
+
# gradio UI
|
173 |
+
|
174 |
+
_TITLE = '''LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation'''
|
175 |
+
|
176 |
+
_DESCRIPTION = '''
|
177 |
+
<div>
|
178 |
+
<a style="display:inline-block" href="https://me.kiui.moe/lgm/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
|
179 |
+
<a style="display:inline-block; margin-left: .5em" href="https://github.com/3DTopia/LGM"><img src='https://img.shields.io/github/stars/3DTopia/LGM?style=social'/></a>
|
180 |
+
</div>
|
181 |
+
|
182 |
+
* Input can be only text, only image, or both image and text.
|
183 |
+
* If you find the output unsatisfying, try using different seeds!
|
184 |
+
'''
|
185 |
+
|
186 |
+
block = gr.Blocks(title=_TITLE).queue()
|
187 |
+
with block:
|
188 |
+
with gr.Row():
|
189 |
+
with gr.Column(scale=1):
|
190 |
+
gr.Markdown('# ' + _TITLE)
|
191 |
+
gr.Markdown(_DESCRIPTION)
|
192 |
+
|
193 |
+
with gr.Row(variant='panel'):
|
194 |
+
with gr.Column(scale=1):
|
195 |
+
# input image
|
196 |
+
input_image = gr.Image(label="image", type='pil')
|
197 |
+
# input prompt
|
198 |
+
input_text = gr.Textbox(label="prompt")
|
199 |
+
# negative prompt
|
200 |
+
input_neg_text = gr.Textbox(label="negative prompt", value='ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate')
|
201 |
+
# elevation
|
202 |
+
input_elevation = gr.Slider(label="elevation", minimum=-90, maximum=90, step=1, value=0)
|
203 |
+
# inference steps
|
204 |
+
input_num_steps = gr.Slider(label="inference steps", minimum=1, maximum=100, step=1, value=30)
|
205 |
+
# random seed
|
206 |
+
input_seed = gr.Slider(label="random seed", minimum=0, maximum=100000, step=1, value=0)
|
207 |
+
# gen button
|
208 |
+
button_gen = gr.Button("Generate")
|
209 |
+
|
210 |
+
|
211 |
+
with gr.Column(scale=1):
|
212 |
+
with gr.Tab("Video"):
|
213 |
+
# final video results
|
214 |
+
output_video = gr.Video(label="video")
|
215 |
+
# ply file
|
216 |
+
output_file = gr.File(label="ply")
|
217 |
+
with gr.Tab("Multi-view Image"):
|
218 |
+
# multi-view results
|
219 |
+
output_image = gr.Image(interactive=False, show_label=False)
|
220 |
+
|
221 |
+
button_gen.click(process, inputs=[input_image, input_text, input_neg_text, input_elevation, input_num_steps, input_seed], outputs=[output_image, output_video, output_file])
|
222 |
+
|
223 |
+
gr.Examples(
|
224 |
+
examples=[
|
225 |
+
"data_test/anya_rgba.png",
|
226 |
+
"data_test/bird_rgba.png",
|
227 |
+
"data_test/catstatue_rgba.png",
|
228 |
+
],
|
229 |
+
inputs=[input_image],
|
230 |
+
outputs=[output_image, output_video, output_file],
|
231 |
+
fn=lambda x: process(input_image=x, prompt=''),
|
232 |
+
cache_examples=False,
|
233 |
+
label='Image-to-3D Examples'
|
234 |
+
)
|
235 |
+
|
236 |
+
gr.Examples(
|
237 |
+
examples=[
|
238 |
+
"a motorbike",
|
239 |
+
"a hamburger",
|
240 |
+
"a furry red fox head",
|
241 |
+
],
|
242 |
+
inputs=[input_text],
|
243 |
+
outputs=[output_image, output_video, output_file],
|
244 |
+
fn=lambda x: process(input_image=None, prompt=x),
|
245 |
+
cache_examples=False,
|
246 |
+
label='Text-to-3D Examples'
|
247 |
+
)
|
248 |
+
|
249 |
+
block.launch()
|
core/__init__.py
ADDED
File without changes
|
core/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (123 Bytes). View file
|
|
core/__pycache__/attention.cpython-39.pyc
ADDED
Binary file (4.36 kB). View file
|
|
core/__pycache__/gs.cpython-39.pyc
ADDED
Binary file (5.48 kB). View file
|
|
core/__pycache__/models.cpython-39.pyc
ADDED
Binary file (4.47 kB). View file
|
|
core/__pycache__/options.cpython-39.pyc
ADDED
Binary file (2.46 kB). View file
|
|
core/__pycache__/provider_objaverse.cpython-39.pyc
ADDED
Binary file (7.74 kB). View file
|
|
core/__pycache__/unet.cpython-39.pyc
ADDED
Binary file (7.45 kB). View file
|
|
core/__pycache__/utils.cpython-39.pyc
ADDED
Binary file (2.54 kB). View file
|
|
core/attention.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
# References:
|
7 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
8 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
9 |
+
|
10 |
+
import os
|
11 |
+
import warnings
|
12 |
+
|
13 |
+
from torch import Tensor
|
14 |
+
from torch import nn
|
15 |
+
|
16 |
+
XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
|
17 |
+
try:
|
18 |
+
if XFORMERS_ENABLED:
|
19 |
+
from xformers.ops import memory_efficient_attention, unbind
|
20 |
+
|
21 |
+
XFORMERS_AVAILABLE = True
|
22 |
+
warnings.warn("xFormers is available (Attention)")
|
23 |
+
else:
|
24 |
+
warnings.warn("xFormers is disabled (Attention)")
|
25 |
+
raise ImportError
|
26 |
+
except ImportError:
|
27 |
+
XFORMERS_AVAILABLE = False
|
28 |
+
warnings.warn("xFormers is not available (Attention)")
|
29 |
+
|
30 |
+
|
31 |
+
class Attention(nn.Module):
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
dim: int,
|
35 |
+
num_heads: int = 8,
|
36 |
+
qkv_bias: bool = False,
|
37 |
+
proj_bias: bool = True,
|
38 |
+
attn_drop: float = 0.0,
|
39 |
+
proj_drop: float = 0.0,
|
40 |
+
) -> None:
|
41 |
+
super().__init__()
|
42 |
+
self.num_heads = num_heads
|
43 |
+
head_dim = dim // num_heads
|
44 |
+
self.scale = head_dim**-0.5
|
45 |
+
|
46 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
47 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
48 |
+
self.proj = nn.Linear(dim, dim, bias=proj_bias)
|
49 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
50 |
+
|
51 |
+
def forward(self, x: Tensor) -> Tensor:
|
52 |
+
B, N, C = x.shape
|
53 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
54 |
+
|
55 |
+
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
|
56 |
+
attn = q @ k.transpose(-2, -1)
|
57 |
+
|
58 |
+
attn = attn.softmax(dim=-1)
|
59 |
+
attn = self.attn_drop(attn)
|
60 |
+
|
61 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
62 |
+
x = self.proj(x)
|
63 |
+
x = self.proj_drop(x)
|
64 |
+
return x
|
65 |
+
|
66 |
+
|
67 |
+
class MemEffAttention(Attention):
|
68 |
+
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
|
69 |
+
if not XFORMERS_AVAILABLE:
|
70 |
+
if attn_bias is not None:
|
71 |
+
raise AssertionError("xFormers is required for using nested tensors")
|
72 |
+
return super().forward(x)
|
73 |
+
|
74 |
+
B, N, C = x.shape
|
75 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
76 |
+
|
77 |
+
q, k, v = unbind(qkv, 2)
|
78 |
+
|
79 |
+
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
|
80 |
+
x = x.reshape([B, N, C])
|
81 |
+
|
82 |
+
x = self.proj(x)
|
83 |
+
x = self.proj_drop(x)
|
84 |
+
return x
|
85 |
+
|
86 |
+
|
87 |
+
class CrossAttention(nn.Module):
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
dim: int,
|
91 |
+
dim_q: int,
|
92 |
+
dim_k: int,
|
93 |
+
dim_v: int,
|
94 |
+
num_heads: int = 8,
|
95 |
+
qkv_bias: bool = False,
|
96 |
+
proj_bias: bool = True,
|
97 |
+
attn_drop: float = 0.0,
|
98 |
+
proj_drop: float = 0.0,
|
99 |
+
) -> None:
|
100 |
+
super().__init__()
|
101 |
+
self.dim = dim
|
102 |
+
self.num_heads = num_heads
|
103 |
+
head_dim = dim // num_heads
|
104 |
+
self.scale = head_dim**-0.5
|
105 |
+
|
106 |
+
self.to_q = nn.Linear(dim_q, dim, bias=qkv_bias)
|
107 |
+
self.to_k = nn.Linear(dim_k, dim, bias=qkv_bias)
|
108 |
+
self.to_v = nn.Linear(dim_v, dim, bias=qkv_bias)
|
109 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
110 |
+
self.proj = nn.Linear(dim, dim, bias=proj_bias)
|
111 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
112 |
+
|
113 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
114 |
+
# q: [B, N, Cq]
|
115 |
+
# k: [B, M, Ck]
|
116 |
+
# v: [B, M, Cv]
|
117 |
+
# return: [B, N, C]
|
118 |
+
|
119 |
+
B, N, _ = q.shape
|
120 |
+
M = k.shape[1]
|
121 |
+
|
122 |
+
q = self.scale * self.to_q(q).reshape(B, N, self.num_heads, self.dim // self.num_heads).permute(0, 2, 1, 3) # [B, nh, N, C/nh]
|
123 |
+
k = self.to_k(k).reshape(B, M, self.num_heads, self.dim // self.num_heads).permute(0, 2, 1, 3) # [B, nh, M, C/nh]
|
124 |
+
v = self.to_v(v).reshape(B, M, self.num_heads, self.dim // self.num_heads).permute(0, 2, 1, 3) # [B, nh, M, C/nh]
|
125 |
+
|
126 |
+
attn = q @ k.transpose(-2, -1) # [B, nh, N, M]
|
127 |
+
|
128 |
+
attn = attn.softmax(dim=-1) # [B, nh, N, M]
|
129 |
+
attn = self.attn_drop(attn)
|
130 |
+
|
131 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) # [B, nh, N, M] @ [B, nh, M, C/nh] --> [B, nh, N, C/nh] --> [B, N, nh, C/nh] --> [B, N, C]
|
132 |
+
x = self.proj(x)
|
133 |
+
x = self.proj_drop(x)
|
134 |
+
return x
|
135 |
+
|
136 |
+
|
137 |
+
class MemEffCrossAttention(CrossAttention):
|
138 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor, attn_bias=None) -> Tensor:
|
139 |
+
if not XFORMERS_AVAILABLE:
|
140 |
+
if attn_bias is not None:
|
141 |
+
raise AssertionError("xFormers is required for using nested tensors")
|
142 |
+
return super().forward(x)
|
143 |
+
|
144 |
+
B, N, _ = q.shape
|
145 |
+
M = k.shape[1]
|
146 |
+
|
147 |
+
q = self.scale * self.to_q(q).reshape(B, N, self.num_heads, self.dim // self.num_heads) # [B, N, nh, C/nh]
|
148 |
+
k = self.to_k(k).reshape(B, M, self.num_heads, self.dim // self.num_heads) # [B, M, nh, C/nh]
|
149 |
+
v = self.to_v(v).reshape(B, M, self.num_heads, self.dim // self.num_heads) # [B, M, nh, C/nh]
|
150 |
+
|
151 |
+
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
|
152 |
+
x = x.reshape(B, N, -1)
|
153 |
+
|
154 |
+
x = self.proj(x)
|
155 |
+
x = self.proj_drop(x)
|
156 |
+
return x
|
core/gs.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from diff_gaussian_rasterization import (
|
8 |
+
GaussianRasterizationSettings,
|
9 |
+
GaussianRasterizer,
|
10 |
+
)
|
11 |
+
|
12 |
+
from core.options import Options
|
13 |
+
|
14 |
+
import kiui
|
15 |
+
|
16 |
+
class GaussianRenderer:
|
17 |
+
def __init__(self, opt: Options):
|
18 |
+
|
19 |
+
self.opt = opt
|
20 |
+
self.bg_color = torch.tensor([1, 1, 1], dtype=torch.float32, device="cuda")
|
21 |
+
|
22 |
+
# intrinsics
|
23 |
+
self.tan_half_fov = np.tan(0.5 * np.deg2rad(self.opt.fovy))
|
24 |
+
self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32)
|
25 |
+
self.proj_matrix[0, 0] = 1 / self.tan_half_fov
|
26 |
+
self.proj_matrix[1, 1] = 1 / self.tan_half_fov
|
27 |
+
self.proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear)
|
28 |
+
self.proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear)
|
29 |
+
self.proj_matrix[2, 3] = 1
|
30 |
+
|
31 |
+
def render(self, gaussians, cam_view, cam_view_proj, cam_pos, bg_color=None, scale_modifier=1):
|
32 |
+
# gaussians: [B, N, 14]
|
33 |
+
# cam_view, cam_view_proj: [B, V, 4, 4]
|
34 |
+
# cam_pos: [B, V, 3]
|
35 |
+
|
36 |
+
device = gaussians.device
|
37 |
+
B, V = cam_view.shape[:2]
|
38 |
+
|
39 |
+
# loop of loop...
|
40 |
+
images = []
|
41 |
+
alphas = []
|
42 |
+
for b in range(B):
|
43 |
+
|
44 |
+
# pos, opacity, scale, rotation, shs
|
45 |
+
means3D = gaussians[b, :, 0:3].contiguous().float()
|
46 |
+
opacity = gaussians[b, :, 3:4].contiguous().float()
|
47 |
+
scales = gaussians[b, :, 4:7].contiguous().float()
|
48 |
+
rotations = gaussians[b, :, 7:11].contiguous().float()
|
49 |
+
rgbs = gaussians[b, :, 11:].contiguous().float() # [N, 3]
|
50 |
+
|
51 |
+
for v in range(V):
|
52 |
+
|
53 |
+
# render novel views
|
54 |
+
view_matrix = cam_view[b, v].float()
|
55 |
+
view_proj_matrix = cam_view_proj[b, v].float()
|
56 |
+
campos = cam_pos[b, v].float()
|
57 |
+
|
58 |
+
raster_settings = GaussianRasterizationSettings(
|
59 |
+
image_height=self.opt.output_size,
|
60 |
+
image_width=self.opt.output_size,
|
61 |
+
tanfovx=self.tan_half_fov,
|
62 |
+
tanfovy=self.tan_half_fov,
|
63 |
+
bg=self.bg_color if bg_color is None else bg_color,
|
64 |
+
scale_modifier=scale_modifier,
|
65 |
+
viewmatrix=view_matrix,
|
66 |
+
projmatrix=view_proj_matrix,
|
67 |
+
sh_degree=0,
|
68 |
+
campos=campos,
|
69 |
+
prefiltered=False,
|
70 |
+
debug=False,
|
71 |
+
)
|
72 |
+
|
73 |
+
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
|
74 |
+
|
75 |
+
# Rasterize visible Gaussians to image, obtain their radii (on screen).
|
76 |
+
rendered_image, radii, rendered_depth, rendered_alpha = rasterizer(
|
77 |
+
means3D=means3D,
|
78 |
+
means2D=torch.zeros_like(means3D, dtype=torch.float32, device=device),
|
79 |
+
shs=None,
|
80 |
+
colors_precomp=rgbs,
|
81 |
+
opacities=opacity,
|
82 |
+
scales=scales,
|
83 |
+
rotations=rotations,
|
84 |
+
cov3D_precomp=None,
|
85 |
+
)
|
86 |
+
|
87 |
+
rendered_image = rendered_image.clamp(0, 1)
|
88 |
+
|
89 |
+
images.append(rendered_image)
|
90 |
+
alphas.append(rendered_alpha)
|
91 |
+
|
92 |
+
images = torch.stack(images, dim=0).view(B, V, 3, self.opt.output_size, self.opt.output_size)
|
93 |
+
alphas = torch.stack(alphas, dim=0).view(B, V, 1, self.opt.output_size, self.opt.output_size)
|
94 |
+
|
95 |
+
return {
|
96 |
+
"image": images, # [B, V, 3, H, W]
|
97 |
+
"alpha": alphas, # [B, V, 1, H, W]
|
98 |
+
}
|
99 |
+
|
100 |
+
|
101 |
+
def save_ply(self, gaussians, path, compatible=True):
|
102 |
+
# gaussians: [B, N, 14]
|
103 |
+
# compatible: save pre-activated gaussians as in the original paper
|
104 |
+
|
105 |
+
assert gaussians.shape[0] == 1, 'only support batch size 1'
|
106 |
+
|
107 |
+
from plyfile import PlyData, PlyElement
|
108 |
+
|
109 |
+
means3D = gaussians[0, :, 0:3].contiguous().float()
|
110 |
+
opacity = gaussians[0, :, 3:4].contiguous().float()
|
111 |
+
scales = gaussians[0, :, 4:7].contiguous().float()
|
112 |
+
rotations = gaussians[0, :, 7:11].contiguous().float()
|
113 |
+
shs = gaussians[0, :, 11:].unsqueeze(1).contiguous().float() # [N, 1, 3]
|
114 |
+
|
115 |
+
# prune by opacity
|
116 |
+
mask = opacity.squeeze(-1) >= 0.005
|
117 |
+
means3D = means3D[mask]
|
118 |
+
opacity = opacity[mask]
|
119 |
+
scales = scales[mask]
|
120 |
+
rotations = rotations[mask]
|
121 |
+
shs = shs[mask]
|
122 |
+
|
123 |
+
# invert activation to make it compatible with the original ply format
|
124 |
+
if compatible:
|
125 |
+
opacity = kiui.op.inverse_sigmoid(opacity)
|
126 |
+
scales = torch.log(scales + 1e-8)
|
127 |
+
shs = (shs - 0.5) / 0.28209479177387814
|
128 |
+
|
129 |
+
xyzs = means3D.detach().cpu().numpy()
|
130 |
+
f_dc = shs.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
|
131 |
+
opacities = opacity.detach().cpu().numpy()
|
132 |
+
scales = scales.detach().cpu().numpy()
|
133 |
+
rotations = rotations.detach().cpu().numpy()
|
134 |
+
|
135 |
+
l = ['x', 'y', 'z']
|
136 |
+
# All channels except the 3 DC
|
137 |
+
for i in range(f_dc.shape[1]):
|
138 |
+
l.append('f_dc_{}'.format(i))
|
139 |
+
l.append('opacity')
|
140 |
+
for i in range(scales.shape[1]):
|
141 |
+
l.append('scale_{}'.format(i))
|
142 |
+
for i in range(rotations.shape[1]):
|
143 |
+
l.append('rot_{}'.format(i))
|
144 |
+
|
145 |
+
dtype_full = [(attribute, 'f4') for attribute in l]
|
146 |
+
|
147 |
+
elements = np.empty(xyzs.shape[0], dtype=dtype_full)
|
148 |
+
attributes = np.concatenate((xyzs, f_dc, opacities, scales, rotations), axis=1)
|
149 |
+
elements[:] = list(map(tuple, attributes))
|
150 |
+
el = PlyElement.describe(elements, 'vertex')
|
151 |
+
|
152 |
+
PlyData([el]).write(path)
|
153 |
+
|
154 |
+
def load_ply(self, path, compatible=True):
|
155 |
+
|
156 |
+
from plyfile import PlyData, PlyElement
|
157 |
+
|
158 |
+
plydata = PlyData.read(path)
|
159 |
+
|
160 |
+
xyz = np.stack((np.asarray(plydata.elements[0]["x"]),
|
161 |
+
np.asarray(plydata.elements[0]["y"]),
|
162 |
+
np.asarray(plydata.elements[0]["z"])), axis=1)
|
163 |
+
print("Number of points at loading : ", xyz.shape[0])
|
164 |
+
|
165 |
+
opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]
|
166 |
+
|
167 |
+
shs = np.zeros((xyz.shape[0], 3))
|
168 |
+
shs[:, 0] = np.asarray(plydata.elements[0]["f_dc_0"])
|
169 |
+
shs[:, 1] = np.asarray(plydata.elements[0]["f_dc_1"])
|
170 |
+
shs[:, 2] = np.asarray(plydata.elements[0]["f_dc_2"])
|
171 |
+
|
172 |
+
scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")]
|
173 |
+
scales = np.zeros((xyz.shape[0], len(scale_names)))
|
174 |
+
for idx, attr_name in enumerate(scale_names):
|
175 |
+
scales[:, idx] = np.asarray(plydata.elements[0][attr_name])
|
176 |
+
|
177 |
+
rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot_")]
|
178 |
+
rots = np.zeros((xyz.shape[0], len(rot_names)))
|
179 |
+
for idx, attr_name in enumerate(rot_names):
|
180 |
+
rots[:, idx] = np.asarray(plydata.elements[0][attr_name])
|
181 |
+
|
182 |
+
gaussians = np.concatenate([xyz, opacities, scales, rots, shs], axis=1)
|
183 |
+
gaussians = torch.from_numpy(gaussians).float() # cpu
|
184 |
+
|
185 |
+
if compatible:
|
186 |
+
gaussians[..., 3:4] = torch.sigmoid(gaussians[..., 3:4])
|
187 |
+
gaussians[..., 4:7] = torch.exp(gaussians[..., 4:7])
|
188 |
+
gaussians[..., 11:] = 0.28209479177387814 * gaussians[..., 11:] + 0.5
|
189 |
+
|
190 |
+
return gaussians
|
core/models.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
import kiui
|
7 |
+
from kiui.lpips import LPIPS
|
8 |
+
|
9 |
+
from core.unet import UNet
|
10 |
+
from core.options import Options
|
11 |
+
from core.gs import GaussianRenderer
|
12 |
+
|
13 |
+
|
14 |
+
class LGM(nn.Module):
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
opt: Options,
|
18 |
+
):
|
19 |
+
super().__init__()
|
20 |
+
|
21 |
+
self.opt = opt
|
22 |
+
|
23 |
+
# unet
|
24 |
+
self.unet = UNet(
|
25 |
+
9, 14,
|
26 |
+
down_channels=self.opt.down_channels,
|
27 |
+
down_attention=self.opt.down_attention,
|
28 |
+
mid_attention=self.opt.mid_attention,
|
29 |
+
up_channels=self.opt.up_channels,
|
30 |
+
up_attention=self.opt.up_attention,
|
31 |
+
)
|
32 |
+
|
33 |
+
# last conv
|
34 |
+
self.conv = nn.Conv2d(14, 14, kernel_size=1) # NOTE: maybe remove it if train again
|
35 |
+
|
36 |
+
# Gaussian Renderer
|
37 |
+
self.gs = GaussianRenderer(opt)
|
38 |
+
|
39 |
+
# activations...
|
40 |
+
self.pos_act = lambda x: x.clamp(-1, 1)
|
41 |
+
self.scale_act = lambda x: 0.1 * F.softplus(x)
|
42 |
+
self.opacity_act = lambda x: torch.sigmoid(x)
|
43 |
+
self.rot_act = F.normalize
|
44 |
+
self.rgb_act = lambda x: 0.5 * torch.tanh(x) + 0.5 # NOTE: may use sigmoid if train again
|
45 |
+
|
46 |
+
# LPIPS loss
|
47 |
+
if self.opt.lambda_lpips > 0:
|
48 |
+
self.lpips_loss = LPIPS(net='vgg')
|
49 |
+
self.lpips_loss.requires_grad_(False)
|
50 |
+
|
51 |
+
|
52 |
+
def state_dict(self, **kwargs):
|
53 |
+
# remove lpips_loss
|
54 |
+
state_dict = super().state_dict(**kwargs)
|
55 |
+
for k in list(state_dict.keys()):
|
56 |
+
if 'lpips_loss' in k:
|
57 |
+
del state_dict[k]
|
58 |
+
return state_dict
|
59 |
+
|
60 |
+
|
61 |
+
def prepare_default_rays(self, device, elevation=0):
|
62 |
+
|
63 |
+
from kiui.cam import orbit_camera
|
64 |
+
from core.utils import get_rays
|
65 |
+
|
66 |
+
cam_poses = np.stack([
|
67 |
+
orbit_camera(elevation, 0, radius=self.opt.cam_radius),
|
68 |
+
orbit_camera(elevation, 90, radius=self.opt.cam_radius),
|
69 |
+
orbit_camera(elevation, 180, radius=self.opt.cam_radius),
|
70 |
+
orbit_camera(elevation, 270, radius=self.opt.cam_radius),
|
71 |
+
], axis=0) # [4, 4, 4]
|
72 |
+
cam_poses = torch.from_numpy(cam_poses)
|
73 |
+
|
74 |
+
rays_embeddings = []
|
75 |
+
for i in range(cam_poses.shape[0]):
|
76 |
+
rays_o, rays_d = get_rays(cam_poses[i], self.opt.input_size, self.opt.input_size, self.opt.fovy) # [h, w, 3]
|
77 |
+
rays_plucker = torch.cat([torch.cross(rays_o, rays_d, dim=-1), rays_d], dim=-1) # [h, w, 6]
|
78 |
+
rays_embeddings.append(rays_plucker)
|
79 |
+
|
80 |
+
## visualize rays for plotting figure
|
81 |
+
# kiui.vis.plot_image(rays_d * 0.5 + 0.5, save=True)
|
82 |
+
|
83 |
+
rays_embeddings = torch.stack(rays_embeddings, dim=0).permute(0, 3, 1, 2).contiguous().to(device) # [V, 6, h, w]
|
84 |
+
|
85 |
+
return rays_embeddings
|
86 |
+
|
87 |
+
|
88 |
+
def forward_gaussians(self, images):
|
89 |
+
# images: [B, 4, 9, H, W]
|
90 |
+
# return: Gaussians: [B, dim_t]
|
91 |
+
|
92 |
+
B, V, C, H, W = images.shape
|
93 |
+
images = images.view(B*V, C, H, W)
|
94 |
+
|
95 |
+
x = self.unet(images) # [B*4, 14, h, w]
|
96 |
+
x = self.conv(x) # [B*4, 14, h, w]
|
97 |
+
|
98 |
+
x = x.reshape(B, 4, 14, self.opt.splat_size, self.opt.splat_size)
|
99 |
+
|
100 |
+
## visualize multi-view gaussian features for plotting figure
|
101 |
+
# tmp_alpha = self.opacity_act(x[0, :, 3:4])
|
102 |
+
# tmp_img_rgb = self.rgb_act(x[0, :, 11:]) * tmp_alpha + (1 - tmp_alpha)
|
103 |
+
# tmp_img_pos = self.pos_act(x[0, :, 0:3]) * 0.5 + 0.5
|
104 |
+
# kiui.vis.plot_image(tmp_img_rgb, save=True)
|
105 |
+
# kiui.vis.plot_image(tmp_img_pos, save=True)
|
106 |
+
|
107 |
+
x = x.permute(0, 1, 3, 4, 2).reshape(B, -1, 14)
|
108 |
+
|
109 |
+
pos = self.pos_act(x[..., 0:3]) # [B, N, 3]
|
110 |
+
opacity = self.opacity_act(x[..., 3:4])
|
111 |
+
scale = self.scale_act(x[..., 4:7])
|
112 |
+
rotation = self.rot_act(x[..., 7:11])
|
113 |
+
rgbs = self.rgb_act(x[..., 11:])
|
114 |
+
|
115 |
+
gaussians = torch.cat([pos, opacity, scale, rotation, rgbs], dim=-1) # [B, N, 14]
|
116 |
+
|
117 |
+
return gaussians
|
118 |
+
|
119 |
+
|
120 |
+
def forward(self, data, step_ratio=1):
|
121 |
+
# data: output of the dataloader
|
122 |
+
# return: loss
|
123 |
+
|
124 |
+
results = {}
|
125 |
+
loss = 0
|
126 |
+
|
127 |
+
images = data['input'] # [B, 4, 9, h, W], input features
|
128 |
+
|
129 |
+
# use the first view to predict gaussians
|
130 |
+
gaussians = self.forward_gaussians(images) # [B, N, 14]
|
131 |
+
|
132 |
+
results['gaussians'] = gaussians
|
133 |
+
|
134 |
+
# random bg for training
|
135 |
+
if self.training:
|
136 |
+
bg_color = torch.rand(3, dtype=torch.float32, device=gaussians.device)
|
137 |
+
else:
|
138 |
+
bg_color = torch.ones(3, dtype=torch.float32, device=gaussians.device)
|
139 |
+
|
140 |
+
# use the other views for rendering and supervision
|
141 |
+
results = self.gs.render(gaussians, data['cam_view'], data['cam_view_proj'], data['cam_pos'], bg_color=bg_color)
|
142 |
+
pred_images = results['image'] # [B, V, C, output_size, output_size]
|
143 |
+
pred_alphas = results['alpha'] # [B, V, 1, output_size, output_size]
|
144 |
+
|
145 |
+
results['images_pred'] = pred_images
|
146 |
+
results['alphas_pred'] = pred_alphas
|
147 |
+
|
148 |
+
gt_images = data['images_output'] # [B, V, 3, output_size, output_size], ground-truth novel views
|
149 |
+
gt_masks = data['masks_output'] # [B, V, 1, output_size, output_size], ground-truth masks
|
150 |
+
|
151 |
+
gt_images = gt_images * gt_masks + bg_color.view(1, 1, 3, 1, 1) * (1 - gt_masks)
|
152 |
+
|
153 |
+
loss_mse = F.mse_loss(pred_images, gt_images) + F.mse_loss(pred_alphas, gt_masks)
|
154 |
+
loss = loss + loss_mse
|
155 |
+
|
156 |
+
if self.opt.lambda_lpips > 0:
|
157 |
+
loss_lpips = self.lpips_loss(
|
158 |
+
# gt_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1,
|
159 |
+
# pred_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1,
|
160 |
+
# downsampled to at most 256 to reduce memory cost
|
161 |
+
F.interpolate(gt_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1, (256, 256), mode='bilinear', align_corners=False),
|
162 |
+
F.interpolate(pred_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1, (256, 256), mode='bilinear', align_corners=False),
|
163 |
+
).mean()
|
164 |
+
results['loss_lpips'] = loss_lpips
|
165 |
+
loss = loss + self.opt.lambda_lpips * loss_lpips
|
166 |
+
|
167 |
+
results['loss'] = loss
|
168 |
+
|
169 |
+
# metric
|
170 |
+
with torch.no_grad():
|
171 |
+
psnr = -10 * torch.log10(torch.mean((pred_images.detach() - gt_images) ** 2))
|
172 |
+
results['psnr'] = psnr
|
173 |
+
|
174 |
+
return results
|
core/options.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tyro
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Tuple, Literal, Dict, Optional
|
4 |
+
|
5 |
+
|
6 |
+
@dataclass
|
7 |
+
class Options:
|
8 |
+
### model
|
9 |
+
# Unet image input size
|
10 |
+
input_size: int = 256
|
11 |
+
# Unet definition
|
12 |
+
down_channels: Tuple[int] = (64, 128, 256, 512, 1024, 1024)
|
13 |
+
down_attention: Tuple[bool] = (False, False, False, True, True, True)
|
14 |
+
mid_attention: bool = True
|
15 |
+
up_channels: Tuple[int] = (1024, 1024, 512, 256)
|
16 |
+
up_attention: Tuple[bool] = (True, True, True, False)
|
17 |
+
# Unet output size, dependent on the input_size and U-Net structure!
|
18 |
+
splat_size: int = 64
|
19 |
+
# gaussian render size
|
20 |
+
output_size: int = 256
|
21 |
+
|
22 |
+
### dataset
|
23 |
+
# data mode (only support s3 now)
|
24 |
+
data_mode: Literal['s3'] = 's3'
|
25 |
+
# fovy of the dataset
|
26 |
+
fovy: float = 49.1
|
27 |
+
# camera near plane
|
28 |
+
znear: float = 0.5
|
29 |
+
# camera far plane
|
30 |
+
zfar: float = 2.5
|
31 |
+
# number of all views (input + output)
|
32 |
+
num_views: int = 12
|
33 |
+
# number of views
|
34 |
+
num_input_views: int = 4
|
35 |
+
# camera radius
|
36 |
+
cam_radius: float = 1.5 # to better use [-1, 1]^3 space
|
37 |
+
# num workers
|
38 |
+
num_workers: int = 8
|
39 |
+
|
40 |
+
### training
|
41 |
+
# workspace
|
42 |
+
workspace: str = './workspace'
|
43 |
+
# resume
|
44 |
+
resume: Optional[str] = None
|
45 |
+
# batch size (per-GPU)
|
46 |
+
batch_size: int = 8
|
47 |
+
# gradient accumulation
|
48 |
+
gradient_accumulation_steps: int = 1
|
49 |
+
# training epochs
|
50 |
+
num_epochs: int = 30
|
51 |
+
# lpips loss weight
|
52 |
+
lambda_lpips: float = 1.0
|
53 |
+
# gradient clip
|
54 |
+
gradient_clip: float = 1.0
|
55 |
+
# mixed precision
|
56 |
+
mixed_precision: str = 'bf16'
|
57 |
+
# learning rate
|
58 |
+
lr: float = 4e-4
|
59 |
+
# augmentation prob for grid distortion
|
60 |
+
prob_grid_distortion: float = 0.5
|
61 |
+
# augmentation prob for camera jitter
|
62 |
+
prob_cam_jitter: float = 0.5
|
63 |
+
|
64 |
+
### testing
|
65 |
+
# test image path
|
66 |
+
test_path: Optional[str] = None
|
67 |
+
|
68 |
+
### misc
|
69 |
+
# nvdiffrast backend setting
|
70 |
+
force_cuda_rast: bool = False
|
71 |
+
# render fancy video with gaussian scaling effect
|
72 |
+
fancy_video: bool = False
|
73 |
+
|
74 |
+
|
75 |
+
# all the default settings
|
76 |
+
config_defaults: Dict[str, Options] = {}
|
77 |
+
config_doc: Dict[str, str] = {}
|
78 |
+
|
79 |
+
config_doc['lrm'] = 'the default settings for LGM'
|
80 |
+
config_defaults['lrm'] = Options()
|
81 |
+
|
82 |
+
config_doc['small'] = 'small model with lower resolution Gaussians'
|
83 |
+
config_defaults['small'] = Options(
|
84 |
+
input_size=256,
|
85 |
+
splat_size=64,
|
86 |
+
output_size=256,
|
87 |
+
batch_size=8,
|
88 |
+
gradient_accumulation_steps=1,
|
89 |
+
mixed_precision='bf16',
|
90 |
+
)
|
91 |
+
|
92 |
+
config_doc['big'] = 'big model with higher resolution Gaussians'
|
93 |
+
config_defaults['big'] = Options(
|
94 |
+
input_size=256,
|
95 |
+
up_channels=(1024, 1024, 512, 256, 128), # one more decoder
|
96 |
+
up_attention=(True, True, True, False, False),
|
97 |
+
splat_size=128,
|
98 |
+
output_size=512, # render & supervise Gaussians at a higher resolution.
|
99 |
+
batch_size=8,
|
100 |
+
num_views=8,
|
101 |
+
gradient_accumulation_steps=1,
|
102 |
+
mixed_precision='bf16',
|
103 |
+
)
|
104 |
+
|
105 |
+
config_doc['tiny'] = 'tiny model for ablation'
|
106 |
+
config_defaults['tiny'] = Options(
|
107 |
+
input_size=256,
|
108 |
+
down_channels=(32, 64, 128, 256, 512),
|
109 |
+
down_attention=(False, False, False, False, True),
|
110 |
+
up_channels=(512, 256, 128),
|
111 |
+
up_attention=(True, False, False, False),
|
112 |
+
splat_size=64,
|
113 |
+
output_size=256,
|
114 |
+
batch_size=16,
|
115 |
+
num_views=8,
|
116 |
+
gradient_accumulation_steps=1,
|
117 |
+
mixed_precision='bf16',
|
118 |
+
)
|
119 |
+
|
120 |
+
AllConfigs = tyro.extras.subcommand_type_from_defaults(config_defaults, config_doc)
|
core/provider_objaverse.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import torchvision.transforms.functional as TF
|
10 |
+
from torch.utils.data import Dataset
|
11 |
+
|
12 |
+
import kiui
|
13 |
+
from core.options import Options
|
14 |
+
from core.utils import get_rays, grid_distortion, orbit_camera_jitter
|
15 |
+
|
16 |
+
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
|
17 |
+
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
|
18 |
+
|
19 |
+
|
20 |
+
class ObjaverseDataset(Dataset):
|
21 |
+
|
22 |
+
def _warn(self):
|
23 |
+
raise NotImplementedError('this dataset is just an example and cannot be used directly, you should modify it to your own setting! (search keyword TODO)')
|
24 |
+
|
25 |
+
def __init__(self, opt: Options, training=True):
|
26 |
+
|
27 |
+
self.opt = opt
|
28 |
+
self.training = training
|
29 |
+
|
30 |
+
# TODO: remove this barrier
|
31 |
+
self._warn()
|
32 |
+
|
33 |
+
# TODO: load the list of objects for training
|
34 |
+
self.items = []
|
35 |
+
with open('TODO: file containing the list', 'r') as f:
|
36 |
+
for line in f.readlines():
|
37 |
+
self.items.append(line.strip())
|
38 |
+
|
39 |
+
# naive split
|
40 |
+
if self.training:
|
41 |
+
self.items = self.items[:-self.opt.batch_size]
|
42 |
+
else:
|
43 |
+
self.items = self.items[-self.opt.batch_size:]
|
44 |
+
|
45 |
+
# default camera intrinsics
|
46 |
+
self.tan_half_fov = np.tan(0.5 * np.deg2rad(self.opt.fovy))
|
47 |
+
self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32)
|
48 |
+
self.proj_matrix[0, 0] = 1 / self.tan_half_fov
|
49 |
+
self.proj_matrix[1, 1] = 1 / self.tan_half_fov
|
50 |
+
self.proj_matrix[2, 2] = (self.opt.zfar + self.opt.znear) / (self.opt.zfar - self.opt.znear)
|
51 |
+
self.proj_matrix[3, 2] = - (self.opt.zfar * self.opt.znear) / (self.opt.zfar - self.opt.znear)
|
52 |
+
self.proj_matrix[2, 3] = 1
|
53 |
+
|
54 |
+
|
55 |
+
def __len__(self):
|
56 |
+
return len(self.items)
|
57 |
+
|
58 |
+
def __getitem__(self, idx):
|
59 |
+
|
60 |
+
uid = self.items[idx]
|
61 |
+
results = {}
|
62 |
+
|
63 |
+
# load num_views images
|
64 |
+
images = []
|
65 |
+
masks = []
|
66 |
+
cam_poses = []
|
67 |
+
|
68 |
+
vid_cnt = 0
|
69 |
+
|
70 |
+
# TODO: choose views, based on your rendering settings
|
71 |
+
if self.training:
|
72 |
+
# input views are in (36, 72), other views are randomly selected
|
73 |
+
vids = np.random.permutation(np.arange(36, 73))[:self.opt.num_input_views].tolist() + np.random.permutation(100).tolist()
|
74 |
+
else:
|
75 |
+
# fixed views
|
76 |
+
vids = np.arange(36, 73, 4).tolist() + np.arange(100).tolist()
|
77 |
+
|
78 |
+
for vid in vids:
|
79 |
+
|
80 |
+
image_path = os.path.join(uid, 'rgb', f'{vid:03d}.png')
|
81 |
+
camera_path = os.path.join(uid, 'pose', f'{vid:03d}.txt')
|
82 |
+
|
83 |
+
try:
|
84 |
+
# TODO: load data (modify self.client here)
|
85 |
+
image = np.frombuffer(self.client.get(image_path), np.uint8)
|
86 |
+
image = torch.from_numpy(cv2.imdecode(image, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255) # [512, 512, 4] in [0, 1]
|
87 |
+
c2w = [float(t) for t in self.client.get(camera_path).decode().strip().split(' ')]
|
88 |
+
c2w = torch.tensor(c2w, dtype=torch.float32).reshape(4, 4)
|
89 |
+
except Exception as e:
|
90 |
+
# print(f'[WARN] dataset {uid} {vid}: {e}')
|
91 |
+
continue
|
92 |
+
|
93 |
+
# TODO: you may have a different camera system
|
94 |
+
# blender world + opencv cam --> opengl world & cam
|
95 |
+
c2w[1] *= -1
|
96 |
+
c2w[[1, 2]] = c2w[[2, 1]]
|
97 |
+
c2w[:3, 1:3] *= -1 # invert up and forward direction
|
98 |
+
|
99 |
+
# scale up radius to fully use the [-1, 1]^3 space!
|
100 |
+
c2w[:3, 3] *= self.opt.cam_radius / 1.5 # 1.5 is the default scale
|
101 |
+
|
102 |
+
image = image.permute(2, 0, 1) # [4, 512, 512]
|
103 |
+
mask = image[3:4] # [1, 512, 512]
|
104 |
+
image = image[:3] * mask + (1 - mask) # [3, 512, 512], to white bg
|
105 |
+
image = image[[2,1,0]].contiguous() # bgr to rgb
|
106 |
+
|
107 |
+
images.append(image)
|
108 |
+
masks.append(mask.squeeze(0))
|
109 |
+
cam_poses.append(c2w)
|
110 |
+
|
111 |
+
vid_cnt += 1
|
112 |
+
if vid_cnt == self.opt.num_views:
|
113 |
+
break
|
114 |
+
|
115 |
+
if vid_cnt < self.opt.num_views:
|
116 |
+
print(f'[WARN] dataset {uid}: not enough valid views, only {vid_cnt} views found!')
|
117 |
+
n = self.opt.num_views - vid_cnt
|
118 |
+
images = images + [images[-1]] * n
|
119 |
+
masks = masks + [masks[-1]] * n
|
120 |
+
cam_poses = cam_poses + [cam_poses[-1]] * n
|
121 |
+
|
122 |
+
images = torch.stack(images, dim=0) # [V, C, H, W]
|
123 |
+
masks = torch.stack(masks, dim=0) # [V, H, W]
|
124 |
+
cam_poses = torch.stack(cam_poses, dim=0) # [V, 4, 4]
|
125 |
+
|
126 |
+
# normalized camera feats as in paper (transform the first pose to a fixed position)
|
127 |
+
transform = torch.tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, self.opt.cam_radius], [0, 0, 0, 1]], dtype=torch.float32) @ torch.inverse(cam_poses[0])
|
128 |
+
cam_poses = transform.unsqueeze(0) @ cam_poses # [V, 4, 4]
|
129 |
+
|
130 |
+
images_input = F.interpolate(images[:self.opt.num_input_views].clone(), size=(self.opt.input_size, self.opt.input_size), mode='bilinear', align_corners=False) # [V, C, H, W]
|
131 |
+
cam_poses_input = cam_poses[:self.opt.num_input_views].clone()
|
132 |
+
|
133 |
+
# data augmentation
|
134 |
+
if self.training:
|
135 |
+
# apply random grid distortion to simulate 3D inconsistency
|
136 |
+
if random.random() < self.opt.prob_grid_distortion:
|
137 |
+
images_input[1:] = grid_distortion(images_input[1:])
|
138 |
+
# apply camera jittering (only to input!)
|
139 |
+
if random.random() < self.opt.prob_cam_jitter:
|
140 |
+
cam_poses_input[1:] = orbit_camera_jitter(cam_poses_input[1:])
|
141 |
+
|
142 |
+
images_input = TF.normalize(images_input, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
|
143 |
+
|
144 |
+
# resize render ground-truth images, range still in [0, 1]
|
145 |
+
results['images_output'] = F.interpolate(images, size=(self.opt.output_size, self.opt.output_size), mode='bilinear', align_corners=False) # [V, C, output_size, output_size]
|
146 |
+
results['masks_output'] = F.interpolate(masks.unsqueeze(1), size=(self.opt.output_size, self.opt.output_size), mode='bilinear', align_corners=False) # [V, 1, output_size, output_size]
|
147 |
+
|
148 |
+
# build rays for input views
|
149 |
+
rays_embeddings = []
|
150 |
+
for i in range(self.opt.num_input_views):
|
151 |
+
rays_o, rays_d = get_rays(cam_poses_input[i], self.opt.input_size, self.opt.input_size, self.opt.fovy) # [h, w, 3]
|
152 |
+
rays_plucker = torch.cat([torch.cross(rays_o, rays_d, dim=-1), rays_d], dim=-1) # [h, w, 6]
|
153 |
+
rays_embeddings.append(rays_plucker)
|
154 |
+
|
155 |
+
|
156 |
+
rays_embeddings = torch.stack(rays_embeddings, dim=0).permute(0, 3, 1, 2).contiguous() # [V, 6, h, w]
|
157 |
+
final_input = torch.cat([images_input, rays_embeddings], dim=1) # [V=4, 9, H, W]
|
158 |
+
results['input'] = final_input
|
159 |
+
|
160 |
+
# opengl to colmap camera for gaussian renderer
|
161 |
+
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
|
162 |
+
|
163 |
+
# cameras needed by gaussian rasterizer
|
164 |
+
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
|
165 |
+
cam_view_proj = cam_view @ self.proj_matrix # [V, 4, 4]
|
166 |
+
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
|
167 |
+
|
168 |
+
results['cam_view'] = cam_view
|
169 |
+
results['cam_view_proj'] = cam_view_proj
|
170 |
+
results['cam_pos'] = cam_pos
|
171 |
+
|
172 |
+
return results
|
core/unet.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
from typing import Tuple, Optional, Literal
|
7 |
+
from functools import partial
|
8 |
+
|
9 |
+
from core.attention import MemEffAttention, MemEffCrossAttention
|
10 |
+
|
11 |
+
class MVAttention(nn.Module):
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
dim: int,
|
15 |
+
num_heads: int = 8,
|
16 |
+
qkv_bias: bool = False,
|
17 |
+
proj_bias: bool = True,
|
18 |
+
attn_drop: float = 0.0,
|
19 |
+
proj_drop: float = 0.0,
|
20 |
+
groups: int = 32,
|
21 |
+
eps: float = 1e-5,
|
22 |
+
residual: bool = True,
|
23 |
+
skip_scale: float = 1,
|
24 |
+
num_frames: int = 4, # WARN: hardcoded!
|
25 |
+
):
|
26 |
+
super().__init__()
|
27 |
+
|
28 |
+
self.residual = residual
|
29 |
+
self.skip_scale = skip_scale
|
30 |
+
self.num_frames = num_frames
|
31 |
+
|
32 |
+
self.norm = nn.GroupNorm(num_groups=groups, num_channels=dim, eps=eps, affine=True)
|
33 |
+
self.attn = MemEffAttention(dim, num_heads, qkv_bias, proj_bias, attn_drop, proj_drop)
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
# x: [B*V, C, H, W]
|
37 |
+
BV, C, H, W = x.shape
|
38 |
+
B = BV // self.num_frames # assert BV % self.num_frames == 0
|
39 |
+
|
40 |
+
res = x
|
41 |
+
x = self.norm(x)
|
42 |
+
|
43 |
+
x = x.reshape(B, self.num_frames, C, H, W).permute(0, 1, 3, 4, 2).reshape(B, -1, C)
|
44 |
+
x = self.attn(x)
|
45 |
+
x = x.reshape(B, self.num_frames, H, W, C).permute(0, 1, 4, 2, 3).reshape(BV, C, H, W)
|
46 |
+
|
47 |
+
if self.residual:
|
48 |
+
x = (x + res) * self.skip_scale
|
49 |
+
return x
|
50 |
+
|
51 |
+
class ResnetBlock(nn.Module):
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
in_channels: int,
|
55 |
+
out_channels: int,
|
56 |
+
resample: Literal['default', 'up', 'down'] = 'default',
|
57 |
+
groups: int = 32,
|
58 |
+
eps: float = 1e-5,
|
59 |
+
skip_scale: float = 1, # multiplied to output
|
60 |
+
):
|
61 |
+
super().__init__()
|
62 |
+
|
63 |
+
self.in_channels = in_channels
|
64 |
+
self.out_channels = out_channels
|
65 |
+
self.skip_scale = skip_scale
|
66 |
+
|
67 |
+
self.norm1 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
68 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
69 |
+
|
70 |
+
self.norm2 = nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True)
|
71 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
72 |
+
|
73 |
+
self.act = F.silu
|
74 |
+
|
75 |
+
self.resample = None
|
76 |
+
if resample == 'up':
|
77 |
+
self.resample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
|
78 |
+
elif resample == 'down':
|
79 |
+
self.resample = nn.AvgPool2d(kernel_size=2, stride=2)
|
80 |
+
|
81 |
+
self.shortcut = nn.Identity()
|
82 |
+
if self.in_channels != self.out_channels:
|
83 |
+
self.shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=True)
|
84 |
+
|
85 |
+
|
86 |
+
def forward(self, x):
|
87 |
+
res = x
|
88 |
+
|
89 |
+
x = self.norm1(x)
|
90 |
+
x = self.act(x)
|
91 |
+
|
92 |
+
if self.resample:
|
93 |
+
res = self.resample(res)
|
94 |
+
x = self.resample(x)
|
95 |
+
|
96 |
+
x = self.conv1(x)
|
97 |
+
x = self.norm2(x)
|
98 |
+
x = self.act(x)
|
99 |
+
x = self.conv2(x)
|
100 |
+
|
101 |
+
x = (x + self.shortcut(res)) * self.skip_scale
|
102 |
+
|
103 |
+
return x
|
104 |
+
|
105 |
+
class DownBlock(nn.Module):
|
106 |
+
def __init__(
|
107 |
+
self,
|
108 |
+
in_channels: int,
|
109 |
+
out_channels: int,
|
110 |
+
num_layers: int = 1,
|
111 |
+
downsample: bool = True,
|
112 |
+
attention: bool = True,
|
113 |
+
attention_heads: int = 16,
|
114 |
+
skip_scale: float = 1,
|
115 |
+
):
|
116 |
+
super().__init__()
|
117 |
+
|
118 |
+
nets = []
|
119 |
+
attns = []
|
120 |
+
for i in range(num_layers):
|
121 |
+
in_channels = in_channels if i == 0 else out_channels
|
122 |
+
nets.append(ResnetBlock(in_channels, out_channels, skip_scale=skip_scale))
|
123 |
+
if attention:
|
124 |
+
attns.append(MVAttention(out_channels, attention_heads, skip_scale=skip_scale))
|
125 |
+
else:
|
126 |
+
attns.append(None)
|
127 |
+
self.nets = nn.ModuleList(nets)
|
128 |
+
self.attns = nn.ModuleList(attns)
|
129 |
+
|
130 |
+
self.downsample = None
|
131 |
+
if downsample:
|
132 |
+
self.downsample = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=2, padding=1)
|
133 |
+
|
134 |
+
def forward(self, x):
|
135 |
+
xs = []
|
136 |
+
|
137 |
+
for attn, net in zip(self.attns, self.nets):
|
138 |
+
x = net(x)
|
139 |
+
if attn:
|
140 |
+
x = attn(x)
|
141 |
+
xs.append(x)
|
142 |
+
|
143 |
+
if self.downsample:
|
144 |
+
x = self.downsample(x)
|
145 |
+
xs.append(x)
|
146 |
+
|
147 |
+
return x, xs
|
148 |
+
|
149 |
+
|
150 |
+
class MidBlock(nn.Module):
|
151 |
+
def __init__(
|
152 |
+
self,
|
153 |
+
in_channels: int,
|
154 |
+
num_layers: int = 1,
|
155 |
+
attention: bool = True,
|
156 |
+
attention_heads: int = 16,
|
157 |
+
skip_scale: float = 1,
|
158 |
+
):
|
159 |
+
super().__init__()
|
160 |
+
|
161 |
+
nets = []
|
162 |
+
attns = []
|
163 |
+
# first layer
|
164 |
+
nets.append(ResnetBlock(in_channels, in_channels, skip_scale=skip_scale))
|
165 |
+
# more layers
|
166 |
+
for i in range(num_layers):
|
167 |
+
nets.append(ResnetBlock(in_channels, in_channels, skip_scale=skip_scale))
|
168 |
+
if attention:
|
169 |
+
attns.append(MVAttention(in_channels, attention_heads, skip_scale=skip_scale))
|
170 |
+
else:
|
171 |
+
attns.append(None)
|
172 |
+
self.nets = nn.ModuleList(nets)
|
173 |
+
self.attns = nn.ModuleList(attns)
|
174 |
+
|
175 |
+
def forward(self, x):
|
176 |
+
x = self.nets[0](x)
|
177 |
+
for attn, net in zip(self.attns, self.nets[1:]):
|
178 |
+
if attn:
|
179 |
+
x = attn(x)
|
180 |
+
x = net(x)
|
181 |
+
return x
|
182 |
+
|
183 |
+
|
184 |
+
class UpBlock(nn.Module):
|
185 |
+
def __init__(
|
186 |
+
self,
|
187 |
+
in_channels: int,
|
188 |
+
prev_out_channels: int,
|
189 |
+
out_channels: int,
|
190 |
+
num_layers: int = 1,
|
191 |
+
upsample: bool = True,
|
192 |
+
attention: bool = True,
|
193 |
+
attention_heads: int = 16,
|
194 |
+
skip_scale: float = 1,
|
195 |
+
):
|
196 |
+
super().__init__()
|
197 |
+
|
198 |
+
nets = []
|
199 |
+
attns = []
|
200 |
+
for i in range(num_layers):
|
201 |
+
cin = in_channels if i == 0 else out_channels
|
202 |
+
cskip = prev_out_channels if (i == num_layers - 1) else out_channels
|
203 |
+
|
204 |
+
nets.append(ResnetBlock(cin + cskip, out_channels, skip_scale=skip_scale))
|
205 |
+
if attention:
|
206 |
+
attns.append(MVAttention(out_channels, attention_heads, skip_scale=skip_scale))
|
207 |
+
else:
|
208 |
+
attns.append(None)
|
209 |
+
self.nets = nn.ModuleList(nets)
|
210 |
+
self.attns = nn.ModuleList(attns)
|
211 |
+
|
212 |
+
self.upsample = None
|
213 |
+
if upsample:
|
214 |
+
self.upsample = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
215 |
+
|
216 |
+
def forward(self, x, xs):
|
217 |
+
|
218 |
+
for attn, net in zip(self.attns, self.nets):
|
219 |
+
res_x = xs[-1]
|
220 |
+
xs = xs[:-1]
|
221 |
+
x = torch.cat([x, res_x], dim=1)
|
222 |
+
x = net(x)
|
223 |
+
if attn:
|
224 |
+
x = attn(x)
|
225 |
+
|
226 |
+
if self.upsample:
|
227 |
+
x = F.interpolate(x, scale_factor=2.0, mode='nearest')
|
228 |
+
x = self.upsample(x)
|
229 |
+
|
230 |
+
return x
|
231 |
+
|
232 |
+
|
233 |
+
# it could be asymmetric!
|
234 |
+
class UNet(nn.Module):
|
235 |
+
def __init__(
|
236 |
+
self,
|
237 |
+
in_channels: int = 3,
|
238 |
+
out_channels: int = 3,
|
239 |
+
down_channels: Tuple[int] = (64, 128, 256, 512, 1024),
|
240 |
+
down_attention: Tuple[bool] = (False, False, False, True, True),
|
241 |
+
mid_attention: bool = True,
|
242 |
+
up_channels: Tuple[int] = (1024, 512, 256),
|
243 |
+
up_attention: Tuple[bool] = (True, True, False),
|
244 |
+
layers_per_block: int = 2,
|
245 |
+
skip_scale: float = np.sqrt(0.5),
|
246 |
+
):
|
247 |
+
super().__init__()
|
248 |
+
|
249 |
+
# first
|
250 |
+
self.conv_in = nn.Conv2d(in_channels, down_channels[0], kernel_size=3, stride=1, padding=1)
|
251 |
+
|
252 |
+
# down
|
253 |
+
down_blocks = []
|
254 |
+
cout = down_channels[0]
|
255 |
+
for i in range(len(down_channels)):
|
256 |
+
cin = cout
|
257 |
+
cout = down_channels[i]
|
258 |
+
|
259 |
+
down_blocks.append(DownBlock(
|
260 |
+
cin, cout,
|
261 |
+
num_layers=layers_per_block,
|
262 |
+
downsample=(i != len(down_channels) - 1), # not final layer
|
263 |
+
attention=down_attention[i],
|
264 |
+
skip_scale=skip_scale,
|
265 |
+
))
|
266 |
+
self.down_blocks = nn.ModuleList(down_blocks)
|
267 |
+
|
268 |
+
# mid
|
269 |
+
self.mid_block = MidBlock(down_channels[-1], attention=mid_attention, skip_scale=skip_scale)
|
270 |
+
|
271 |
+
# up
|
272 |
+
up_blocks = []
|
273 |
+
cout = up_channels[0]
|
274 |
+
for i in range(len(up_channels)):
|
275 |
+
cin = cout
|
276 |
+
cout = up_channels[i]
|
277 |
+
cskip = down_channels[max(-2 - i, -len(down_channels))] # for assymetric
|
278 |
+
|
279 |
+
up_blocks.append(UpBlock(
|
280 |
+
cin, cskip, cout,
|
281 |
+
num_layers=layers_per_block + 1, # one more layer for up
|
282 |
+
upsample=(i != len(up_channels) - 1), # not final layer
|
283 |
+
attention=up_attention[i],
|
284 |
+
skip_scale=skip_scale,
|
285 |
+
))
|
286 |
+
self.up_blocks = nn.ModuleList(up_blocks)
|
287 |
+
|
288 |
+
# last
|
289 |
+
self.norm_out = nn.GroupNorm(num_channels=up_channels[-1], num_groups=32, eps=1e-5)
|
290 |
+
self.conv_out = nn.Conv2d(up_channels[-1], out_channels, kernel_size=3, stride=1, padding=1)
|
291 |
+
|
292 |
+
|
293 |
+
def forward(self, x):
|
294 |
+
# x: [B, Cin, H, W]
|
295 |
+
|
296 |
+
# first
|
297 |
+
x = self.conv_in(x)
|
298 |
+
|
299 |
+
# down
|
300 |
+
xss = [x]
|
301 |
+
for block in self.down_blocks:
|
302 |
+
x, xs = block(x)
|
303 |
+
xss.extend(xs)
|
304 |
+
|
305 |
+
# mid
|
306 |
+
x = self.mid_block(x)
|
307 |
+
|
308 |
+
# up
|
309 |
+
for block in self.up_blocks:
|
310 |
+
xs = xss[-len(block.nets):]
|
311 |
+
xss = xss[:-len(block.nets)]
|
312 |
+
x = block(x, xs)
|
313 |
+
|
314 |
+
# last
|
315 |
+
x = self.norm_out(x)
|
316 |
+
x = F.silu(x)
|
317 |
+
x = self.conv_out(x) # [B, Cout, H', W']
|
318 |
+
|
319 |
+
return x
|
core/utils.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
import roma
|
8 |
+
from kiui.op import safe_normalize
|
9 |
+
|
10 |
+
def get_rays(pose, h, w, fovy, opengl=True):
|
11 |
+
|
12 |
+
x, y = torch.meshgrid(
|
13 |
+
torch.arange(w, device=pose.device),
|
14 |
+
torch.arange(h, device=pose.device),
|
15 |
+
indexing="xy",
|
16 |
+
)
|
17 |
+
x = x.flatten()
|
18 |
+
y = y.flatten()
|
19 |
+
|
20 |
+
cx = w * 0.5
|
21 |
+
cy = h * 0.5
|
22 |
+
|
23 |
+
focal = h * 0.5 / np.tan(0.5 * np.deg2rad(fovy))
|
24 |
+
|
25 |
+
camera_dirs = F.pad(
|
26 |
+
torch.stack(
|
27 |
+
[
|
28 |
+
(x - cx + 0.5) / focal,
|
29 |
+
(y - cy + 0.5) / focal * (-1.0 if opengl else 1.0),
|
30 |
+
],
|
31 |
+
dim=-1,
|
32 |
+
),
|
33 |
+
(0, 1),
|
34 |
+
value=(-1.0 if opengl else 1.0),
|
35 |
+
) # [hw, 3]
|
36 |
+
|
37 |
+
rays_d = camera_dirs @ pose[:3, :3].transpose(0, 1) # [hw, 3]
|
38 |
+
rays_o = pose[:3, 3].unsqueeze(0).expand_as(rays_d) # [hw, 3]
|
39 |
+
|
40 |
+
rays_o = rays_o.view(h, w, 3)
|
41 |
+
rays_d = safe_normalize(rays_d).view(h, w, 3)
|
42 |
+
|
43 |
+
return rays_o, rays_d
|
44 |
+
|
45 |
+
def orbit_camera_jitter(poses, strength=0.1):
|
46 |
+
# poses: [B, 4, 4], assume orbit camera in opengl format
|
47 |
+
# random orbital rotate
|
48 |
+
|
49 |
+
B = poses.shape[0]
|
50 |
+
rotvec_x = poses[:, :3, 1] * strength * np.pi * (torch.rand(B, 1, device=poses.device) * 2 - 1)
|
51 |
+
rotvec_y = poses[:, :3, 0] * strength * np.pi / 2 * (torch.rand(B, 1, device=poses.device) * 2 - 1)
|
52 |
+
|
53 |
+
rot = roma.rotvec_to_rotmat(rotvec_x) @ roma.rotvec_to_rotmat(rotvec_y)
|
54 |
+
R = rot @ poses[:, :3, :3]
|
55 |
+
T = rot @ poses[:, :3, 3:]
|
56 |
+
|
57 |
+
new_poses = poses.clone()
|
58 |
+
new_poses[:, :3, :3] = R
|
59 |
+
new_poses[:, :3, 3:] = T
|
60 |
+
|
61 |
+
return new_poses
|
62 |
+
|
63 |
+
def grid_distortion(images, strength=0.5):
|
64 |
+
# images: [B, C, H, W]
|
65 |
+
# num_steps: int, grid resolution for distortion
|
66 |
+
# strength: float in [0, 1], strength of distortion
|
67 |
+
|
68 |
+
B, C, H, W = images.shape
|
69 |
+
|
70 |
+
num_steps = np.random.randint(8, 17)
|
71 |
+
grid_steps = torch.linspace(-1, 1, num_steps)
|
72 |
+
|
73 |
+
# have to loop batch...
|
74 |
+
grids = []
|
75 |
+
for b in range(B):
|
76 |
+
# construct displacement
|
77 |
+
x_steps = torch.linspace(0, 1, num_steps) # [num_steps], inclusive
|
78 |
+
x_steps = (x_steps + strength * (torch.rand_like(x_steps) - 0.5) / (num_steps - 1)).clamp(0, 1) # perturb
|
79 |
+
x_steps = (x_steps * W).long() # [num_steps]
|
80 |
+
x_steps[0] = 0
|
81 |
+
x_steps[-1] = W
|
82 |
+
xs = []
|
83 |
+
for i in range(num_steps - 1):
|
84 |
+
xs.append(torch.linspace(grid_steps[i], grid_steps[i + 1], x_steps[i + 1] - x_steps[i]))
|
85 |
+
xs = torch.cat(xs, dim=0) # [W]
|
86 |
+
|
87 |
+
y_steps = torch.linspace(0, 1, num_steps) # [num_steps], inclusive
|
88 |
+
y_steps = (y_steps + strength * (torch.rand_like(y_steps) - 0.5) / (num_steps - 1)).clamp(0, 1) # perturb
|
89 |
+
y_steps = (y_steps * H).long() # [num_steps]
|
90 |
+
y_steps[0] = 0
|
91 |
+
y_steps[-1] = H
|
92 |
+
ys = []
|
93 |
+
for i in range(num_steps - 1):
|
94 |
+
ys.append(torch.linspace(grid_steps[i], grid_steps[i + 1], y_steps[i + 1] - y_steps[i]))
|
95 |
+
ys = torch.cat(ys, dim=0) # [H]
|
96 |
+
|
97 |
+
# construct grid
|
98 |
+
grid_x, grid_y = torch.meshgrid(xs, ys, indexing='xy') # [H, W]
|
99 |
+
grid = torch.stack([grid_x, grid_y], dim=-1) # [H, W, 2]
|
100 |
+
|
101 |
+
grids.append(grid)
|
102 |
+
|
103 |
+
grids = torch.stack(grids, dim=0).to(images.device) # [B, H, W, 2]
|
104 |
+
|
105 |
+
# grid sample
|
106 |
+
images = F.grid_sample(images, grids, align_corners=False)
|
107 |
+
|
108 |
+
return images
|
109 |
+
|
data_test/anya_rgba.png
ADDED
data_test/bird_rgba.png
ADDED
data_test/catstatue_rgba.png
ADDED
mvdream/__pycache__/mv_unet.cpython-39.pyc
ADDED
Binary file (23.4 kB). View file
|
|
mvdream/__pycache__/pipeline_mvdream.cpython-39.pyc
ADDED
Binary file (15.7 kB). View file
|
|
mvdream/mv_unet.py
ADDED
@@ -0,0 +1,1005 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
from inspect import isfunction
|
4 |
+
from typing import Optional, Any, List
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from einops import rearrange, repeat
|
10 |
+
|
11 |
+
from diffusers.configuration_utils import ConfigMixin
|
12 |
+
from diffusers.models.modeling_utils import ModelMixin
|
13 |
+
|
14 |
+
# require xformers!
|
15 |
+
import xformers
|
16 |
+
import xformers.ops
|
17 |
+
|
18 |
+
from kiui.cam import orbit_camera
|
19 |
+
|
20 |
+
def get_camera(
|
21 |
+
num_frames, elevation=0, azimuth_start=0, azimuth_span=360, blender_coord=True, extra_view=False,
|
22 |
+
):
|
23 |
+
angle_gap = azimuth_span / num_frames
|
24 |
+
cameras = []
|
25 |
+
for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
|
26 |
+
|
27 |
+
pose = orbit_camera(elevation, azimuth, radius=1) # [4, 4]
|
28 |
+
|
29 |
+
# opengl to blender
|
30 |
+
if blender_coord:
|
31 |
+
pose[2] *= -1
|
32 |
+
pose[[1, 2]] = pose[[2, 1]]
|
33 |
+
|
34 |
+
cameras.append(pose.flatten())
|
35 |
+
|
36 |
+
if extra_view:
|
37 |
+
cameras.append(np.zeros_like(cameras[0]))
|
38 |
+
|
39 |
+
return torch.from_numpy(np.stack(cameras, axis=0)).float() # [num_frames, 16]
|
40 |
+
|
41 |
+
|
42 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
43 |
+
"""
|
44 |
+
Create sinusoidal timestep embeddings.
|
45 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
46 |
+
These may be fractional.
|
47 |
+
:param dim: the dimension of the output.
|
48 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
49 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
50 |
+
"""
|
51 |
+
if not repeat_only:
|
52 |
+
half = dim // 2
|
53 |
+
freqs = torch.exp(
|
54 |
+
-math.log(max_period)
|
55 |
+
* torch.arange(start=0, end=half, dtype=torch.float32)
|
56 |
+
/ half
|
57 |
+
).to(device=timesteps.device)
|
58 |
+
args = timesteps[:, None] * freqs[None]
|
59 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
60 |
+
if dim % 2:
|
61 |
+
embedding = torch.cat(
|
62 |
+
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
63 |
+
)
|
64 |
+
else:
|
65 |
+
embedding = repeat(timesteps, "b -> b d", d=dim)
|
66 |
+
# import pdb; pdb.set_trace()
|
67 |
+
return embedding
|
68 |
+
|
69 |
+
|
70 |
+
def zero_module(module):
|
71 |
+
"""
|
72 |
+
Zero out the parameters of a module and return it.
|
73 |
+
"""
|
74 |
+
for p in module.parameters():
|
75 |
+
p.detach().zero_()
|
76 |
+
return module
|
77 |
+
|
78 |
+
|
79 |
+
def conv_nd(dims, *args, **kwargs):
|
80 |
+
"""
|
81 |
+
Create a 1D, 2D, or 3D convolution module.
|
82 |
+
"""
|
83 |
+
if dims == 1:
|
84 |
+
return nn.Conv1d(*args, **kwargs)
|
85 |
+
elif dims == 2:
|
86 |
+
return nn.Conv2d(*args, **kwargs)
|
87 |
+
elif dims == 3:
|
88 |
+
return nn.Conv3d(*args, **kwargs)
|
89 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
90 |
+
|
91 |
+
|
92 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
93 |
+
"""
|
94 |
+
Create a 1D, 2D, or 3D average pooling module.
|
95 |
+
"""
|
96 |
+
if dims == 1:
|
97 |
+
return nn.AvgPool1d(*args, **kwargs)
|
98 |
+
elif dims == 2:
|
99 |
+
return nn.AvgPool2d(*args, **kwargs)
|
100 |
+
elif dims == 3:
|
101 |
+
return nn.AvgPool3d(*args, **kwargs)
|
102 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
103 |
+
|
104 |
+
|
105 |
+
def default(val, d):
|
106 |
+
if val is not None:
|
107 |
+
return val
|
108 |
+
return d() if isfunction(d) else d
|
109 |
+
|
110 |
+
|
111 |
+
class GEGLU(nn.Module):
|
112 |
+
def __init__(self, dim_in, dim_out):
|
113 |
+
super().__init__()
|
114 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
118 |
+
return x * F.gelu(gate)
|
119 |
+
|
120 |
+
|
121 |
+
class FeedForward(nn.Module):
|
122 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
123 |
+
super().__init__()
|
124 |
+
inner_dim = int(dim * mult)
|
125 |
+
dim_out = default(dim_out, dim)
|
126 |
+
project_in = (
|
127 |
+
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
128 |
+
if not glu
|
129 |
+
else GEGLU(dim, inner_dim)
|
130 |
+
)
|
131 |
+
|
132 |
+
self.net = nn.Sequential(
|
133 |
+
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
134 |
+
)
|
135 |
+
|
136 |
+
def forward(self, x):
|
137 |
+
return self.net(x)
|
138 |
+
|
139 |
+
|
140 |
+
class MemoryEfficientCrossAttention(nn.Module):
|
141 |
+
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
142 |
+
def __init__(
|
143 |
+
self,
|
144 |
+
query_dim,
|
145 |
+
context_dim=None,
|
146 |
+
heads=8,
|
147 |
+
dim_head=64,
|
148 |
+
dropout=0.0,
|
149 |
+
ip_dim=0,
|
150 |
+
ip_weight=1,
|
151 |
+
):
|
152 |
+
super().__init__()
|
153 |
+
|
154 |
+
inner_dim = dim_head * heads
|
155 |
+
context_dim = default(context_dim, query_dim)
|
156 |
+
|
157 |
+
self.heads = heads
|
158 |
+
self.dim_head = dim_head
|
159 |
+
|
160 |
+
self.ip_dim = ip_dim
|
161 |
+
self.ip_weight = ip_weight
|
162 |
+
|
163 |
+
if self.ip_dim > 0:
|
164 |
+
self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
165 |
+
self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
166 |
+
|
167 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
168 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
169 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
170 |
+
|
171 |
+
self.to_out = nn.Sequential(
|
172 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
173 |
+
)
|
174 |
+
self.attention_op: Optional[Any] = None
|
175 |
+
|
176 |
+
def forward(self, x, context=None):
|
177 |
+
q = self.to_q(x)
|
178 |
+
context = default(context, x)
|
179 |
+
|
180 |
+
if self.ip_dim > 0:
|
181 |
+
# context: [B, 77 + 16(ip), 1024]
|
182 |
+
token_len = context.shape[1]
|
183 |
+
context_ip = context[:, -self.ip_dim :, :]
|
184 |
+
k_ip = self.to_k_ip(context_ip)
|
185 |
+
v_ip = self.to_v_ip(context_ip)
|
186 |
+
context = context[:, : (token_len - self.ip_dim), :]
|
187 |
+
|
188 |
+
k = self.to_k(context)
|
189 |
+
v = self.to_v(context)
|
190 |
+
|
191 |
+
b, _, _ = q.shape
|
192 |
+
q, k, v = map(
|
193 |
+
lambda t: t.unsqueeze(3)
|
194 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
195 |
+
.permute(0, 2, 1, 3)
|
196 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
197 |
+
.contiguous(),
|
198 |
+
(q, k, v),
|
199 |
+
)
|
200 |
+
|
201 |
+
# actually compute the attention, what we cannot get enough of
|
202 |
+
out = xformers.ops.memory_efficient_attention(
|
203 |
+
q, k, v, attn_bias=None, op=self.attention_op
|
204 |
+
)
|
205 |
+
|
206 |
+
if self.ip_dim > 0:
|
207 |
+
k_ip, v_ip = map(
|
208 |
+
lambda t: t.unsqueeze(3)
|
209 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
210 |
+
.permute(0, 2, 1, 3)
|
211 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
212 |
+
.contiguous(),
|
213 |
+
(k_ip, v_ip),
|
214 |
+
)
|
215 |
+
# actually compute the attention, what we cannot get enough of
|
216 |
+
out_ip = xformers.ops.memory_efficient_attention(
|
217 |
+
q, k_ip, v_ip, attn_bias=None, op=self.attention_op
|
218 |
+
)
|
219 |
+
out = out + self.ip_weight * out_ip
|
220 |
+
|
221 |
+
out = (
|
222 |
+
out.unsqueeze(0)
|
223 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
224 |
+
.permute(0, 2, 1, 3)
|
225 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
226 |
+
)
|
227 |
+
return self.to_out(out)
|
228 |
+
|
229 |
+
|
230 |
+
class BasicTransformerBlock3D(nn.Module):
|
231 |
+
|
232 |
+
def __init__(
|
233 |
+
self,
|
234 |
+
dim,
|
235 |
+
n_heads,
|
236 |
+
d_head,
|
237 |
+
context_dim,
|
238 |
+
dropout=0.0,
|
239 |
+
gated_ff=True,
|
240 |
+
ip_dim=0,
|
241 |
+
ip_weight=1,
|
242 |
+
):
|
243 |
+
super().__init__()
|
244 |
+
|
245 |
+
self.attn1 = MemoryEfficientCrossAttention(
|
246 |
+
query_dim=dim,
|
247 |
+
context_dim=None, # self-attention
|
248 |
+
heads=n_heads,
|
249 |
+
dim_head=d_head,
|
250 |
+
dropout=dropout,
|
251 |
+
)
|
252 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
253 |
+
self.attn2 = MemoryEfficientCrossAttention(
|
254 |
+
query_dim=dim,
|
255 |
+
context_dim=context_dim,
|
256 |
+
heads=n_heads,
|
257 |
+
dim_head=d_head,
|
258 |
+
dropout=dropout,
|
259 |
+
# ip only applies to cross-attention
|
260 |
+
ip_dim=ip_dim,
|
261 |
+
ip_weight=ip_weight,
|
262 |
+
)
|
263 |
+
self.norm1 = nn.LayerNorm(dim)
|
264 |
+
self.norm2 = nn.LayerNorm(dim)
|
265 |
+
self.norm3 = nn.LayerNorm(dim)
|
266 |
+
|
267 |
+
def forward(self, x, context=None, num_frames=1):
|
268 |
+
x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
|
269 |
+
x = self.attn1(self.norm1(x), context=None) + x
|
270 |
+
x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
|
271 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
272 |
+
x = self.ff(self.norm3(x)) + x
|
273 |
+
return x
|
274 |
+
|
275 |
+
|
276 |
+
class SpatialTransformer3D(nn.Module):
|
277 |
+
|
278 |
+
def __init__(
|
279 |
+
self,
|
280 |
+
in_channels,
|
281 |
+
n_heads,
|
282 |
+
d_head,
|
283 |
+
context_dim, # cross attention input dim
|
284 |
+
depth=1,
|
285 |
+
dropout=0.0,
|
286 |
+
ip_dim=0,
|
287 |
+
ip_weight=1,
|
288 |
+
):
|
289 |
+
super().__init__()
|
290 |
+
|
291 |
+
if not isinstance(context_dim, list):
|
292 |
+
context_dim = [context_dim]
|
293 |
+
|
294 |
+
self.in_channels = in_channels
|
295 |
+
|
296 |
+
inner_dim = n_heads * d_head
|
297 |
+
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
298 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
299 |
+
|
300 |
+
self.transformer_blocks = nn.ModuleList(
|
301 |
+
[
|
302 |
+
BasicTransformerBlock3D(
|
303 |
+
inner_dim,
|
304 |
+
n_heads,
|
305 |
+
d_head,
|
306 |
+
context_dim=context_dim[d],
|
307 |
+
dropout=dropout,
|
308 |
+
ip_dim=ip_dim,
|
309 |
+
ip_weight=ip_weight,
|
310 |
+
)
|
311 |
+
for d in range(depth)
|
312 |
+
]
|
313 |
+
)
|
314 |
+
|
315 |
+
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
316 |
+
|
317 |
+
|
318 |
+
def forward(self, x, context=None, num_frames=1):
|
319 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
320 |
+
if not isinstance(context, list):
|
321 |
+
context = [context]
|
322 |
+
b, c, h, w = x.shape
|
323 |
+
x_in = x
|
324 |
+
x = self.norm(x)
|
325 |
+
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
326 |
+
x = self.proj_in(x)
|
327 |
+
for i, block in enumerate(self.transformer_blocks):
|
328 |
+
x = block(x, context=context[i], num_frames=num_frames)
|
329 |
+
x = self.proj_out(x)
|
330 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
331 |
+
|
332 |
+
return x + x_in
|
333 |
+
|
334 |
+
|
335 |
+
class PerceiverAttention(nn.Module):
|
336 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
337 |
+
super().__init__()
|
338 |
+
self.scale = dim_head ** -0.5
|
339 |
+
self.dim_head = dim_head
|
340 |
+
self.heads = heads
|
341 |
+
inner_dim = dim_head * heads
|
342 |
+
|
343 |
+
self.norm1 = nn.LayerNorm(dim)
|
344 |
+
self.norm2 = nn.LayerNorm(dim)
|
345 |
+
|
346 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
347 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
348 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
349 |
+
|
350 |
+
def forward(self, x, latents):
|
351 |
+
"""
|
352 |
+
Args:
|
353 |
+
x (torch.Tensor): image features
|
354 |
+
shape (b, n1, D)
|
355 |
+
latent (torch.Tensor): latent features
|
356 |
+
shape (b, n2, D)
|
357 |
+
"""
|
358 |
+
x = self.norm1(x)
|
359 |
+
latents = self.norm2(latents)
|
360 |
+
|
361 |
+
b, l, _ = latents.shape
|
362 |
+
|
363 |
+
q = self.to_q(latents)
|
364 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
365 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
366 |
+
|
367 |
+
q, k, v = map(
|
368 |
+
lambda t: t.reshape(b, t.shape[1], self.heads, -1)
|
369 |
+
.transpose(1, 2)
|
370 |
+
.reshape(b, self.heads, t.shape[1], -1)
|
371 |
+
.contiguous(),
|
372 |
+
(q, k, v),
|
373 |
+
)
|
374 |
+
|
375 |
+
# attention
|
376 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
377 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
378 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
379 |
+
out = weight @ v
|
380 |
+
|
381 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
382 |
+
|
383 |
+
return self.to_out(out)
|
384 |
+
|
385 |
+
|
386 |
+
class Resampler(nn.Module):
|
387 |
+
def __init__(
|
388 |
+
self,
|
389 |
+
dim=1024,
|
390 |
+
depth=8,
|
391 |
+
dim_head=64,
|
392 |
+
heads=16,
|
393 |
+
num_queries=8,
|
394 |
+
embedding_dim=768,
|
395 |
+
output_dim=1024,
|
396 |
+
ff_mult=4,
|
397 |
+
):
|
398 |
+
super().__init__()
|
399 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5)
|
400 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
401 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
402 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
403 |
+
|
404 |
+
self.layers = nn.ModuleList([])
|
405 |
+
for _ in range(depth):
|
406 |
+
self.layers.append(
|
407 |
+
nn.ModuleList(
|
408 |
+
[
|
409 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
410 |
+
nn.Sequential(
|
411 |
+
nn.LayerNorm(dim),
|
412 |
+
nn.Linear(dim, dim * ff_mult, bias=False),
|
413 |
+
nn.GELU(),
|
414 |
+
nn.Linear(dim * ff_mult, dim, bias=False),
|
415 |
+
)
|
416 |
+
]
|
417 |
+
)
|
418 |
+
)
|
419 |
+
|
420 |
+
def forward(self, x):
|
421 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
422 |
+
x = self.proj_in(x)
|
423 |
+
for attn, ff in self.layers:
|
424 |
+
latents = attn(x, latents) + latents
|
425 |
+
latents = ff(latents) + latents
|
426 |
+
|
427 |
+
latents = self.proj_out(latents)
|
428 |
+
return self.norm_out(latents)
|
429 |
+
|
430 |
+
|
431 |
+
class CondSequential(nn.Sequential):
|
432 |
+
"""
|
433 |
+
A sequential module that passes timestep embeddings to the children that
|
434 |
+
support it as an extra input.
|
435 |
+
"""
|
436 |
+
|
437 |
+
def forward(self, x, emb, context=None, num_frames=1):
|
438 |
+
for layer in self:
|
439 |
+
if isinstance(layer, ResBlock):
|
440 |
+
x = layer(x, emb)
|
441 |
+
elif isinstance(layer, SpatialTransformer3D):
|
442 |
+
x = layer(x, context, num_frames=num_frames)
|
443 |
+
else:
|
444 |
+
x = layer(x)
|
445 |
+
return x
|
446 |
+
|
447 |
+
|
448 |
+
class Upsample(nn.Module):
|
449 |
+
"""
|
450 |
+
An upsampling layer with an optional convolution.
|
451 |
+
:param channels: channels in the inputs and outputs.
|
452 |
+
:param use_conv: a bool determining if a convolution is applied.
|
453 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
454 |
+
upsampling occurs in the inner-two dimensions.
|
455 |
+
"""
|
456 |
+
|
457 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
458 |
+
super().__init__()
|
459 |
+
self.channels = channels
|
460 |
+
self.out_channels = out_channels or channels
|
461 |
+
self.use_conv = use_conv
|
462 |
+
self.dims = dims
|
463 |
+
if use_conv:
|
464 |
+
self.conv = conv_nd(
|
465 |
+
dims, self.channels, self.out_channels, 3, padding=padding
|
466 |
+
)
|
467 |
+
|
468 |
+
def forward(self, x):
|
469 |
+
assert x.shape[1] == self.channels
|
470 |
+
if self.dims == 3:
|
471 |
+
x = F.interpolate(
|
472 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
473 |
+
)
|
474 |
+
else:
|
475 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
476 |
+
if self.use_conv:
|
477 |
+
x = self.conv(x)
|
478 |
+
return x
|
479 |
+
|
480 |
+
|
481 |
+
class Downsample(nn.Module):
|
482 |
+
"""
|
483 |
+
A downsampling layer with an optional convolution.
|
484 |
+
:param channels: channels in the inputs and outputs.
|
485 |
+
:param use_conv: a bool determining if a convolution is applied.
|
486 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
487 |
+
downsampling occurs in the inner-two dimensions.
|
488 |
+
"""
|
489 |
+
|
490 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
491 |
+
super().__init__()
|
492 |
+
self.channels = channels
|
493 |
+
self.out_channels = out_channels or channels
|
494 |
+
self.use_conv = use_conv
|
495 |
+
self.dims = dims
|
496 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
497 |
+
if use_conv:
|
498 |
+
self.op = conv_nd(
|
499 |
+
dims,
|
500 |
+
self.channels,
|
501 |
+
self.out_channels,
|
502 |
+
3,
|
503 |
+
stride=stride,
|
504 |
+
padding=padding,
|
505 |
+
)
|
506 |
+
else:
|
507 |
+
assert self.channels == self.out_channels
|
508 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
509 |
+
|
510 |
+
def forward(self, x):
|
511 |
+
assert x.shape[1] == self.channels
|
512 |
+
return self.op(x)
|
513 |
+
|
514 |
+
|
515 |
+
class ResBlock(nn.Module):
|
516 |
+
"""
|
517 |
+
A residual block that can optionally change the number of channels.
|
518 |
+
:param channels: the number of input channels.
|
519 |
+
:param emb_channels: the number of timestep embedding channels.
|
520 |
+
:param dropout: the rate of dropout.
|
521 |
+
:param out_channels: if specified, the number of out channels.
|
522 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
523 |
+
convolution instead of a smaller 1x1 convolution to change the
|
524 |
+
channels in the skip connection.
|
525 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
526 |
+
:param up: if True, use this block for upsampling.
|
527 |
+
:param down: if True, use this block for downsampling.
|
528 |
+
"""
|
529 |
+
|
530 |
+
def __init__(
|
531 |
+
self,
|
532 |
+
channels,
|
533 |
+
emb_channels,
|
534 |
+
dropout,
|
535 |
+
out_channels=None,
|
536 |
+
use_conv=False,
|
537 |
+
use_scale_shift_norm=False,
|
538 |
+
dims=2,
|
539 |
+
up=False,
|
540 |
+
down=False,
|
541 |
+
):
|
542 |
+
super().__init__()
|
543 |
+
self.channels = channels
|
544 |
+
self.emb_channels = emb_channels
|
545 |
+
self.dropout = dropout
|
546 |
+
self.out_channels = out_channels or channels
|
547 |
+
self.use_conv = use_conv
|
548 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
549 |
+
|
550 |
+
self.in_layers = nn.Sequential(
|
551 |
+
nn.GroupNorm(32, channels),
|
552 |
+
nn.SiLU(),
|
553 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
554 |
+
)
|
555 |
+
|
556 |
+
self.updown = up or down
|
557 |
+
|
558 |
+
if up:
|
559 |
+
self.h_upd = Upsample(channels, False, dims)
|
560 |
+
self.x_upd = Upsample(channels, False, dims)
|
561 |
+
elif down:
|
562 |
+
self.h_upd = Downsample(channels, False, dims)
|
563 |
+
self.x_upd = Downsample(channels, False, dims)
|
564 |
+
else:
|
565 |
+
self.h_upd = self.x_upd = nn.Identity()
|
566 |
+
|
567 |
+
self.emb_layers = nn.Sequential(
|
568 |
+
nn.SiLU(),
|
569 |
+
nn.Linear(
|
570 |
+
emb_channels,
|
571 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
572 |
+
),
|
573 |
+
)
|
574 |
+
self.out_layers = nn.Sequential(
|
575 |
+
nn.GroupNorm(32, self.out_channels),
|
576 |
+
nn.SiLU(),
|
577 |
+
nn.Dropout(p=dropout),
|
578 |
+
zero_module(
|
579 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
580 |
+
),
|
581 |
+
)
|
582 |
+
|
583 |
+
if self.out_channels == channels:
|
584 |
+
self.skip_connection = nn.Identity()
|
585 |
+
elif use_conv:
|
586 |
+
self.skip_connection = conv_nd(
|
587 |
+
dims, channels, self.out_channels, 3, padding=1
|
588 |
+
)
|
589 |
+
else:
|
590 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
591 |
+
|
592 |
+
def forward(self, x, emb):
|
593 |
+
if self.updown:
|
594 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
595 |
+
h = in_rest(x)
|
596 |
+
h = self.h_upd(h)
|
597 |
+
x = self.x_upd(x)
|
598 |
+
h = in_conv(h)
|
599 |
+
else:
|
600 |
+
h = self.in_layers(x)
|
601 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
602 |
+
while len(emb_out.shape) < len(h.shape):
|
603 |
+
emb_out = emb_out[..., None]
|
604 |
+
if self.use_scale_shift_norm:
|
605 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
606 |
+
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
607 |
+
h = out_norm(h) * (1 + scale) + shift
|
608 |
+
h = out_rest(h)
|
609 |
+
else:
|
610 |
+
h = h + emb_out
|
611 |
+
h = self.out_layers(h)
|
612 |
+
return self.skip_connection(x) + h
|
613 |
+
|
614 |
+
|
615 |
+
class MultiViewUNetModel(ModelMixin, ConfigMixin):
|
616 |
+
"""
|
617 |
+
The full multi-view UNet model with attention, timestep embedding and camera embedding.
|
618 |
+
:param in_channels: channels in the input Tensor.
|
619 |
+
:param model_channels: base channel count for the model.
|
620 |
+
:param out_channels: channels in the output Tensor.
|
621 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
622 |
+
:param attention_resolutions: a collection of downsample rates at which
|
623 |
+
attention will take place. May be a set, list, or tuple.
|
624 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
625 |
+
will be used.
|
626 |
+
:param dropout: the dropout probability.
|
627 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
628 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
629 |
+
downsampling.
|
630 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
631 |
+
:param num_classes: if specified (as an int), then this model will be
|
632 |
+
class-conditional with `num_classes` classes.
|
633 |
+
:param num_heads: the number of attention heads in each attention layer.
|
634 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
635 |
+
a fixed channel width per attention head.
|
636 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
637 |
+
of heads for upsampling. Deprecated.
|
638 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
639 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
640 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
641 |
+
increased efficiency.
|
642 |
+
:param camera_dim: dimensionality of camera input.
|
643 |
+
"""
|
644 |
+
|
645 |
+
def __init__(
|
646 |
+
self,
|
647 |
+
image_size,
|
648 |
+
in_channels,
|
649 |
+
model_channels,
|
650 |
+
out_channels,
|
651 |
+
num_res_blocks,
|
652 |
+
attention_resolutions,
|
653 |
+
dropout=0,
|
654 |
+
channel_mult=(1, 2, 4, 8),
|
655 |
+
conv_resample=True,
|
656 |
+
dims=2,
|
657 |
+
num_classes=None,
|
658 |
+
num_heads=-1,
|
659 |
+
num_head_channels=-1,
|
660 |
+
num_heads_upsample=-1,
|
661 |
+
use_scale_shift_norm=False,
|
662 |
+
resblock_updown=False,
|
663 |
+
transformer_depth=1,
|
664 |
+
context_dim=None,
|
665 |
+
n_embed=None,
|
666 |
+
num_attention_blocks=None,
|
667 |
+
adm_in_channels=None,
|
668 |
+
camera_dim=None,
|
669 |
+
ip_dim=0, # imagedream uses ip_dim > 0
|
670 |
+
ip_weight=1.0,
|
671 |
+
**kwargs,
|
672 |
+
):
|
673 |
+
super().__init__()
|
674 |
+
assert context_dim is not None
|
675 |
+
|
676 |
+
if num_heads_upsample == -1:
|
677 |
+
num_heads_upsample = num_heads
|
678 |
+
|
679 |
+
if num_heads == -1:
|
680 |
+
assert (
|
681 |
+
num_head_channels != -1
|
682 |
+
), "Either num_heads or num_head_channels has to be set"
|
683 |
+
|
684 |
+
if num_head_channels == -1:
|
685 |
+
assert (
|
686 |
+
num_heads != -1
|
687 |
+
), "Either num_heads or num_head_channels has to be set"
|
688 |
+
|
689 |
+
self.image_size = image_size
|
690 |
+
self.in_channels = in_channels
|
691 |
+
self.model_channels = model_channels
|
692 |
+
self.out_channels = out_channels
|
693 |
+
if isinstance(num_res_blocks, int):
|
694 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
695 |
+
else:
|
696 |
+
if len(num_res_blocks) != len(channel_mult):
|
697 |
+
raise ValueError(
|
698 |
+
"provide num_res_blocks either as an int (globally constant) or "
|
699 |
+
"as a list/tuple (per-level) with the same length as channel_mult"
|
700 |
+
)
|
701 |
+
self.num_res_blocks = num_res_blocks
|
702 |
+
|
703 |
+
if num_attention_blocks is not None:
|
704 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
705 |
+
assert all(
|
706 |
+
map(
|
707 |
+
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
708 |
+
range(len(num_attention_blocks)),
|
709 |
+
)
|
710 |
+
)
|
711 |
+
print(
|
712 |
+
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
713 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
714 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
715 |
+
f"attention will still not be set."
|
716 |
+
)
|
717 |
+
|
718 |
+
self.attention_resolutions = attention_resolutions
|
719 |
+
self.dropout = dropout
|
720 |
+
self.channel_mult = channel_mult
|
721 |
+
self.conv_resample = conv_resample
|
722 |
+
self.num_classes = num_classes
|
723 |
+
self.num_heads = num_heads
|
724 |
+
self.num_head_channels = num_head_channels
|
725 |
+
self.num_heads_upsample = num_heads_upsample
|
726 |
+
self.predict_codebook_ids = n_embed is not None
|
727 |
+
|
728 |
+
self.ip_dim = ip_dim
|
729 |
+
self.ip_weight = ip_weight
|
730 |
+
|
731 |
+
if self.ip_dim > 0:
|
732 |
+
self.image_embed = Resampler(
|
733 |
+
dim=context_dim,
|
734 |
+
depth=4,
|
735 |
+
dim_head=64,
|
736 |
+
heads=12,
|
737 |
+
num_queries=ip_dim, # num token
|
738 |
+
embedding_dim=1280,
|
739 |
+
output_dim=context_dim,
|
740 |
+
ff_mult=4,
|
741 |
+
)
|
742 |
+
|
743 |
+
time_embed_dim = model_channels * 4
|
744 |
+
self.time_embed = nn.Sequential(
|
745 |
+
nn.Linear(model_channels, time_embed_dim),
|
746 |
+
nn.SiLU(),
|
747 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
748 |
+
)
|
749 |
+
|
750 |
+
if camera_dim is not None:
|
751 |
+
time_embed_dim = model_channels * 4
|
752 |
+
self.camera_embed = nn.Sequential(
|
753 |
+
nn.Linear(camera_dim, time_embed_dim),
|
754 |
+
nn.SiLU(),
|
755 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
756 |
+
)
|
757 |
+
|
758 |
+
if self.num_classes is not None:
|
759 |
+
if isinstance(self.num_classes, int):
|
760 |
+
self.label_emb = nn.Embedding(self.num_classes, time_embed_dim)
|
761 |
+
elif self.num_classes == "continuous":
|
762 |
+
# print("setting up linear c_adm embedding layer")
|
763 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
764 |
+
elif self.num_classes == "sequential":
|
765 |
+
assert adm_in_channels is not None
|
766 |
+
self.label_emb = nn.Sequential(
|
767 |
+
nn.Sequential(
|
768 |
+
nn.Linear(adm_in_channels, time_embed_dim),
|
769 |
+
nn.SiLU(),
|
770 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
771 |
+
)
|
772 |
+
)
|
773 |
+
else:
|
774 |
+
raise ValueError()
|
775 |
+
|
776 |
+
self.input_blocks = nn.ModuleList(
|
777 |
+
[
|
778 |
+
CondSequential(
|
779 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
780 |
+
)
|
781 |
+
]
|
782 |
+
)
|
783 |
+
self._feature_size = model_channels
|
784 |
+
input_block_chans = [model_channels]
|
785 |
+
ch = model_channels
|
786 |
+
ds = 1
|
787 |
+
for level, mult in enumerate(channel_mult):
|
788 |
+
for nr in range(self.num_res_blocks[level]):
|
789 |
+
layers: List[Any] = [
|
790 |
+
ResBlock(
|
791 |
+
ch,
|
792 |
+
time_embed_dim,
|
793 |
+
dropout,
|
794 |
+
out_channels=mult * model_channels,
|
795 |
+
dims=dims,
|
796 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
797 |
+
)
|
798 |
+
]
|
799 |
+
ch = mult * model_channels
|
800 |
+
if ds in attention_resolutions:
|
801 |
+
if num_head_channels == -1:
|
802 |
+
dim_head = ch // num_heads
|
803 |
+
else:
|
804 |
+
num_heads = ch // num_head_channels
|
805 |
+
dim_head = num_head_channels
|
806 |
+
|
807 |
+
if num_attention_blocks is None or nr < num_attention_blocks[level]:
|
808 |
+
layers.append(
|
809 |
+
SpatialTransformer3D(
|
810 |
+
ch,
|
811 |
+
num_heads,
|
812 |
+
dim_head,
|
813 |
+
context_dim=context_dim,
|
814 |
+
depth=transformer_depth,
|
815 |
+
ip_dim=self.ip_dim,
|
816 |
+
ip_weight=self.ip_weight,
|
817 |
+
)
|
818 |
+
)
|
819 |
+
self.input_blocks.append(CondSequential(*layers))
|
820 |
+
self._feature_size += ch
|
821 |
+
input_block_chans.append(ch)
|
822 |
+
if level != len(channel_mult) - 1:
|
823 |
+
out_ch = ch
|
824 |
+
self.input_blocks.append(
|
825 |
+
CondSequential(
|
826 |
+
ResBlock(
|
827 |
+
ch,
|
828 |
+
time_embed_dim,
|
829 |
+
dropout,
|
830 |
+
out_channels=out_ch,
|
831 |
+
dims=dims,
|
832 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
833 |
+
down=True,
|
834 |
+
)
|
835 |
+
if resblock_updown
|
836 |
+
else Downsample(
|
837 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
838 |
+
)
|
839 |
+
)
|
840 |
+
)
|
841 |
+
ch = out_ch
|
842 |
+
input_block_chans.append(ch)
|
843 |
+
ds *= 2
|
844 |
+
self._feature_size += ch
|
845 |
+
|
846 |
+
if num_head_channels == -1:
|
847 |
+
dim_head = ch // num_heads
|
848 |
+
else:
|
849 |
+
num_heads = ch // num_head_channels
|
850 |
+
dim_head = num_head_channels
|
851 |
+
|
852 |
+
self.middle_block = CondSequential(
|
853 |
+
ResBlock(
|
854 |
+
ch,
|
855 |
+
time_embed_dim,
|
856 |
+
dropout,
|
857 |
+
dims=dims,
|
858 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
859 |
+
),
|
860 |
+
SpatialTransformer3D(
|
861 |
+
ch,
|
862 |
+
num_heads,
|
863 |
+
dim_head,
|
864 |
+
context_dim=context_dim,
|
865 |
+
depth=transformer_depth,
|
866 |
+
ip_dim=self.ip_dim,
|
867 |
+
ip_weight=self.ip_weight,
|
868 |
+
),
|
869 |
+
ResBlock(
|
870 |
+
ch,
|
871 |
+
time_embed_dim,
|
872 |
+
dropout,
|
873 |
+
dims=dims,
|
874 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
875 |
+
),
|
876 |
+
)
|
877 |
+
self._feature_size += ch
|
878 |
+
|
879 |
+
self.output_blocks = nn.ModuleList([])
|
880 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
881 |
+
for i in range(self.num_res_blocks[level] + 1):
|
882 |
+
ich = input_block_chans.pop()
|
883 |
+
layers = [
|
884 |
+
ResBlock(
|
885 |
+
ch + ich,
|
886 |
+
time_embed_dim,
|
887 |
+
dropout,
|
888 |
+
out_channels=model_channels * mult,
|
889 |
+
dims=dims,
|
890 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
891 |
+
)
|
892 |
+
]
|
893 |
+
ch = model_channels * mult
|
894 |
+
if ds in attention_resolutions:
|
895 |
+
if num_head_channels == -1:
|
896 |
+
dim_head = ch // num_heads
|
897 |
+
else:
|
898 |
+
num_heads = ch // num_head_channels
|
899 |
+
dim_head = num_head_channels
|
900 |
+
|
901 |
+
if num_attention_blocks is None or i < num_attention_blocks[level]:
|
902 |
+
layers.append(
|
903 |
+
SpatialTransformer3D(
|
904 |
+
ch,
|
905 |
+
num_heads,
|
906 |
+
dim_head,
|
907 |
+
context_dim=context_dim,
|
908 |
+
depth=transformer_depth,
|
909 |
+
ip_dim=self.ip_dim,
|
910 |
+
ip_weight=self.ip_weight,
|
911 |
+
)
|
912 |
+
)
|
913 |
+
if level and i == self.num_res_blocks[level]:
|
914 |
+
out_ch = ch
|
915 |
+
layers.append(
|
916 |
+
ResBlock(
|
917 |
+
ch,
|
918 |
+
time_embed_dim,
|
919 |
+
dropout,
|
920 |
+
out_channels=out_ch,
|
921 |
+
dims=dims,
|
922 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
923 |
+
up=True,
|
924 |
+
)
|
925 |
+
if resblock_updown
|
926 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
927 |
+
)
|
928 |
+
ds //= 2
|
929 |
+
self.output_blocks.append(CondSequential(*layers))
|
930 |
+
self._feature_size += ch
|
931 |
+
|
932 |
+
self.out = nn.Sequential(
|
933 |
+
nn.GroupNorm(32, ch),
|
934 |
+
nn.SiLU(),
|
935 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
936 |
+
)
|
937 |
+
if self.predict_codebook_ids:
|
938 |
+
self.id_predictor = nn.Sequential(
|
939 |
+
nn.GroupNorm(32, ch),
|
940 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
941 |
+
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
942 |
+
)
|
943 |
+
|
944 |
+
def forward(
|
945 |
+
self,
|
946 |
+
x,
|
947 |
+
timesteps=None,
|
948 |
+
context=None,
|
949 |
+
y=None,
|
950 |
+
camera=None,
|
951 |
+
num_frames=1,
|
952 |
+
ip=None,
|
953 |
+
ip_img=None,
|
954 |
+
**kwargs,
|
955 |
+
):
|
956 |
+
"""
|
957 |
+
Apply the model to an input batch.
|
958 |
+
:param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
|
959 |
+
:param timesteps: a 1-D batch of timesteps.
|
960 |
+
:param context: conditioning plugged in via crossattn
|
961 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
962 |
+
:param num_frames: a integer indicating number of frames for tensor reshaping.
|
963 |
+
:return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
|
964 |
+
"""
|
965 |
+
assert (
|
966 |
+
x.shape[0] % num_frames == 0
|
967 |
+
), "input batch size must be dividable by num_frames!"
|
968 |
+
assert (y is not None) == (
|
969 |
+
self.num_classes is not None
|
970 |
+
), "must specify y if and only if the model is class-conditional"
|
971 |
+
|
972 |
+
hs = []
|
973 |
+
|
974 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
975 |
+
|
976 |
+
emb = self.time_embed(t_emb)
|
977 |
+
|
978 |
+
if self.num_classes is not None:
|
979 |
+
assert y is not None
|
980 |
+
assert y.shape[0] == x.shape[0]
|
981 |
+
emb = emb + self.label_emb(y)
|
982 |
+
|
983 |
+
# Add camera embeddings
|
984 |
+
if camera is not None:
|
985 |
+
emb = emb + self.camera_embed(camera)
|
986 |
+
|
987 |
+
# imagedream variant
|
988 |
+
if self.ip_dim > 0:
|
989 |
+
x[(num_frames - 1) :: num_frames, :, :, :] = ip_img # place at [4, 9]
|
990 |
+
ip_emb = self.image_embed(ip)
|
991 |
+
context = torch.cat((context, ip_emb), 1)
|
992 |
+
|
993 |
+
h = x
|
994 |
+
for module in self.input_blocks:
|
995 |
+
h = module(h, emb, context, num_frames=num_frames)
|
996 |
+
hs.append(h)
|
997 |
+
h = self.middle_block(h, emb, context, num_frames=num_frames)
|
998 |
+
for module in self.output_blocks:
|
999 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
1000 |
+
h = module(h, emb, context, num_frames=num_frames)
|
1001 |
+
h = h.type(x.dtype)
|
1002 |
+
if self.predict_codebook_ids:
|
1003 |
+
return self.id_predictor(h)
|
1004 |
+
else:
|
1005 |
+
return self.out(h)
|
mvdream/pipeline_mvdream.py
ADDED
@@ -0,0 +1,559 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import inspect
|
4 |
+
import numpy as np
|
5 |
+
from typing import Callable, List, Optional, Union
|
6 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel, CLIPImageProcessor
|
7 |
+
from diffusers import AutoencoderKL, DiffusionPipeline
|
8 |
+
from diffusers.utils import (
|
9 |
+
deprecate,
|
10 |
+
is_accelerate_available,
|
11 |
+
is_accelerate_version,
|
12 |
+
logging,
|
13 |
+
)
|
14 |
+
from diffusers.configuration_utils import FrozenDict
|
15 |
+
from diffusers.schedulers import DDIMScheduler
|
16 |
+
from diffusers.utils.torch_utils import randn_tensor
|
17 |
+
|
18 |
+
from mvdream.mv_unet import MultiViewUNetModel, get_camera
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
21 |
+
|
22 |
+
|
23 |
+
class MVDreamPipeline(DiffusionPipeline):
|
24 |
+
|
25 |
+
_optional_components = ["feature_extractor", "image_encoder"]
|
26 |
+
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
vae: AutoencoderKL,
|
30 |
+
unet: MultiViewUNetModel,
|
31 |
+
tokenizer: CLIPTokenizer,
|
32 |
+
text_encoder: CLIPTextModel,
|
33 |
+
scheduler: DDIMScheduler,
|
34 |
+
# imagedream variant
|
35 |
+
feature_extractor: CLIPImageProcessor,
|
36 |
+
image_encoder: CLIPVisionModel,
|
37 |
+
requires_safety_checker: bool = False,
|
38 |
+
):
|
39 |
+
super().__init__()
|
40 |
+
|
41 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: # type: ignore
|
42 |
+
deprecation_message = (
|
43 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
44 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " # type: ignore
|
45 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
46 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
47 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
48 |
+
" file"
|
49 |
+
)
|
50 |
+
deprecate(
|
51 |
+
"steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False
|
52 |
+
)
|
53 |
+
new_config = dict(scheduler.config)
|
54 |
+
new_config["steps_offset"] = 1
|
55 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
56 |
+
|
57 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: # type: ignore
|
58 |
+
deprecation_message = (
|
59 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
60 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
61 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
62 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
63 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
64 |
+
)
|
65 |
+
deprecate(
|
66 |
+
"clip_sample not set", "1.0.0", deprecation_message, standard_warn=False
|
67 |
+
)
|
68 |
+
new_config = dict(scheduler.config)
|
69 |
+
new_config["clip_sample"] = False
|
70 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
71 |
+
|
72 |
+
self.register_modules(
|
73 |
+
vae=vae,
|
74 |
+
unet=unet,
|
75 |
+
scheduler=scheduler,
|
76 |
+
tokenizer=tokenizer,
|
77 |
+
text_encoder=text_encoder,
|
78 |
+
feature_extractor=feature_extractor,
|
79 |
+
image_encoder=image_encoder,
|
80 |
+
)
|
81 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
82 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
83 |
+
|
84 |
+
def enable_vae_slicing(self):
|
85 |
+
r"""
|
86 |
+
Enable sliced VAE decoding.
|
87 |
+
|
88 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
89 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
90 |
+
"""
|
91 |
+
self.vae.enable_slicing()
|
92 |
+
|
93 |
+
def disable_vae_slicing(self):
|
94 |
+
r"""
|
95 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
96 |
+
computing decoding in one step.
|
97 |
+
"""
|
98 |
+
self.vae.disable_slicing()
|
99 |
+
|
100 |
+
def enable_vae_tiling(self):
|
101 |
+
r"""
|
102 |
+
Enable tiled VAE decoding.
|
103 |
+
|
104 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
|
105 |
+
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
|
106 |
+
"""
|
107 |
+
self.vae.enable_tiling()
|
108 |
+
|
109 |
+
def disable_vae_tiling(self):
|
110 |
+
r"""
|
111 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
|
112 |
+
computing decoding in one step.
|
113 |
+
"""
|
114 |
+
self.vae.disable_tiling()
|
115 |
+
|
116 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
117 |
+
r"""
|
118 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
119 |
+
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
120 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
121 |
+
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
122 |
+
`enable_model_cpu_offload`, but performance is lower.
|
123 |
+
"""
|
124 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
|
125 |
+
from accelerate import cpu_offload
|
126 |
+
else:
|
127 |
+
raise ImportError(
|
128 |
+
"`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher"
|
129 |
+
)
|
130 |
+
|
131 |
+
device = torch.device(f"cuda:{gpu_id}")
|
132 |
+
|
133 |
+
if self.device.type != "cpu":
|
134 |
+
self.to("cpu", silence_dtype_warnings=True)
|
135 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
136 |
+
|
137 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
138 |
+
cpu_offload(cpu_offloaded_model, device)
|
139 |
+
|
140 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
141 |
+
r"""
|
142 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
143 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
144 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
145 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
146 |
+
"""
|
147 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
148 |
+
from accelerate import cpu_offload_with_hook
|
149 |
+
else:
|
150 |
+
raise ImportError(
|
151 |
+
"`enable_model_offload` requires `accelerate v0.17.0` or higher."
|
152 |
+
)
|
153 |
+
|
154 |
+
device = torch.device(f"cuda:{gpu_id}")
|
155 |
+
|
156 |
+
if self.device.type != "cpu":
|
157 |
+
self.to("cpu", silence_dtype_warnings=True)
|
158 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
159 |
+
|
160 |
+
hook = None
|
161 |
+
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
|
162 |
+
_, hook = cpu_offload_with_hook(
|
163 |
+
cpu_offloaded_model, device, prev_module_hook=hook
|
164 |
+
)
|
165 |
+
|
166 |
+
# We'll offload the last model manually.
|
167 |
+
self.final_offload_hook = hook
|
168 |
+
|
169 |
+
@property
|
170 |
+
def _execution_device(self):
|
171 |
+
r"""
|
172 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
173 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
174 |
+
hooks.
|
175 |
+
"""
|
176 |
+
if not hasattr(self.unet, "_hf_hook"):
|
177 |
+
return self.device
|
178 |
+
for module in self.unet.modules():
|
179 |
+
if (
|
180 |
+
hasattr(module, "_hf_hook")
|
181 |
+
and hasattr(module._hf_hook, "execution_device")
|
182 |
+
and module._hf_hook.execution_device is not None
|
183 |
+
):
|
184 |
+
return torch.device(module._hf_hook.execution_device)
|
185 |
+
return self.device
|
186 |
+
|
187 |
+
def _encode_prompt(
|
188 |
+
self,
|
189 |
+
prompt,
|
190 |
+
device,
|
191 |
+
num_images_per_prompt,
|
192 |
+
do_classifier_free_guidance: bool,
|
193 |
+
negative_prompt=None,
|
194 |
+
):
|
195 |
+
r"""
|
196 |
+
Encodes the prompt into text encoder hidden states.
|
197 |
+
|
198 |
+
Args:
|
199 |
+
prompt (`str` or `List[str]`, *optional*):
|
200 |
+
prompt to be encoded
|
201 |
+
device: (`torch.device`):
|
202 |
+
torch device
|
203 |
+
num_images_per_prompt (`int`):
|
204 |
+
number of images that should be generated per prompt
|
205 |
+
do_classifier_free_guidance (`bool`):
|
206 |
+
whether to use classifier free guidance or not
|
207 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
208 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
209 |
+
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
210 |
+
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
211 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
212 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
213 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
214 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
215 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
216 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
217 |
+
argument.
|
218 |
+
"""
|
219 |
+
if prompt is not None and isinstance(prompt, str):
|
220 |
+
batch_size = 1
|
221 |
+
elif prompt is not None and isinstance(prompt, list):
|
222 |
+
batch_size = len(prompt)
|
223 |
+
else:
|
224 |
+
raise ValueError(
|
225 |
+
f"`prompt` should be either a string or a list of strings, but got {type(prompt)}."
|
226 |
+
)
|
227 |
+
|
228 |
+
text_inputs = self.tokenizer(
|
229 |
+
prompt,
|
230 |
+
padding="max_length",
|
231 |
+
max_length=self.tokenizer.model_max_length,
|
232 |
+
truncation=True,
|
233 |
+
return_tensors="pt",
|
234 |
+
)
|
235 |
+
text_input_ids = text_inputs.input_ids
|
236 |
+
untruncated_ids = self.tokenizer(
|
237 |
+
prompt, padding="longest", return_tensors="pt"
|
238 |
+
).input_ids
|
239 |
+
|
240 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
241 |
+
text_input_ids, untruncated_ids
|
242 |
+
):
|
243 |
+
removed_text = self.tokenizer.batch_decode(
|
244 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
245 |
+
)
|
246 |
+
logger.warning(
|
247 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
248 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
249 |
+
)
|
250 |
+
|
251 |
+
if (
|
252 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
253 |
+
and self.text_encoder.config.use_attention_mask
|
254 |
+
):
|
255 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
256 |
+
else:
|
257 |
+
attention_mask = None
|
258 |
+
|
259 |
+
prompt_embeds = self.text_encoder(
|
260 |
+
text_input_ids.to(device),
|
261 |
+
attention_mask=attention_mask,
|
262 |
+
)
|
263 |
+
prompt_embeds = prompt_embeds[0]
|
264 |
+
|
265 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
266 |
+
|
267 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
268 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
269 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
270 |
+
prompt_embeds = prompt_embeds.view(
|
271 |
+
bs_embed * num_images_per_prompt, seq_len, -1
|
272 |
+
)
|
273 |
+
|
274 |
+
# get unconditional embeddings for classifier free guidance
|
275 |
+
if do_classifier_free_guidance:
|
276 |
+
uncond_tokens: List[str]
|
277 |
+
if negative_prompt is None:
|
278 |
+
uncond_tokens = [""] * batch_size
|
279 |
+
elif type(prompt) is not type(negative_prompt):
|
280 |
+
raise TypeError(
|
281 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
282 |
+
f" {type(prompt)}."
|
283 |
+
)
|
284 |
+
elif isinstance(negative_prompt, str):
|
285 |
+
uncond_tokens = [negative_prompt]
|
286 |
+
elif batch_size != len(negative_prompt):
|
287 |
+
raise ValueError(
|
288 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
289 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
290 |
+
" the batch size of `prompt`."
|
291 |
+
)
|
292 |
+
else:
|
293 |
+
uncond_tokens = negative_prompt
|
294 |
+
|
295 |
+
max_length = prompt_embeds.shape[1]
|
296 |
+
uncond_input = self.tokenizer(
|
297 |
+
uncond_tokens,
|
298 |
+
padding="max_length",
|
299 |
+
max_length=max_length,
|
300 |
+
truncation=True,
|
301 |
+
return_tensors="pt",
|
302 |
+
)
|
303 |
+
|
304 |
+
if (
|
305 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
306 |
+
and self.text_encoder.config.use_attention_mask
|
307 |
+
):
|
308 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
309 |
+
else:
|
310 |
+
attention_mask = None
|
311 |
+
|
312 |
+
negative_prompt_embeds = self.text_encoder(
|
313 |
+
uncond_input.input_ids.to(device),
|
314 |
+
attention_mask=attention_mask,
|
315 |
+
)
|
316 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
317 |
+
|
318 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
319 |
+
seq_len = negative_prompt_embeds.shape[1]
|
320 |
+
|
321 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
322 |
+
dtype=self.text_encoder.dtype, device=device
|
323 |
+
)
|
324 |
+
|
325 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
326 |
+
1, num_images_per_prompt, 1
|
327 |
+
)
|
328 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
329 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
330 |
+
)
|
331 |
+
|
332 |
+
# For classifier free guidance, we need to do two forward passes.
|
333 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
334 |
+
# to avoid doing two forward passes
|
335 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
336 |
+
|
337 |
+
return prompt_embeds
|
338 |
+
|
339 |
+
def decode_latents(self, latents):
|
340 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
341 |
+
image = self.vae.decode(latents).sample
|
342 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
343 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
344 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
345 |
+
return image
|
346 |
+
|
347 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
348 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
349 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
350 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
351 |
+
# and should be between [0, 1]
|
352 |
+
|
353 |
+
accepts_eta = "eta" in set(
|
354 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
355 |
+
)
|
356 |
+
extra_step_kwargs = {}
|
357 |
+
if accepts_eta:
|
358 |
+
extra_step_kwargs["eta"] = eta
|
359 |
+
|
360 |
+
# check if the scheduler accepts generator
|
361 |
+
accepts_generator = "generator" in set(
|
362 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
363 |
+
)
|
364 |
+
if accepts_generator:
|
365 |
+
extra_step_kwargs["generator"] = generator
|
366 |
+
return extra_step_kwargs
|
367 |
+
|
368 |
+
def prepare_latents(
|
369 |
+
self,
|
370 |
+
batch_size,
|
371 |
+
num_channels_latents,
|
372 |
+
height,
|
373 |
+
width,
|
374 |
+
dtype,
|
375 |
+
device,
|
376 |
+
generator,
|
377 |
+
latents=None,
|
378 |
+
):
|
379 |
+
shape = (
|
380 |
+
batch_size,
|
381 |
+
num_channels_latents,
|
382 |
+
height // self.vae_scale_factor,
|
383 |
+
width // self.vae_scale_factor,
|
384 |
+
)
|
385 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
386 |
+
raise ValueError(
|
387 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
388 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
389 |
+
)
|
390 |
+
|
391 |
+
if latents is None:
|
392 |
+
latents = randn_tensor(
|
393 |
+
shape, generator=generator, device=device, dtype=dtype
|
394 |
+
)
|
395 |
+
else:
|
396 |
+
latents = latents.to(device)
|
397 |
+
|
398 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
399 |
+
latents = latents * self.scheduler.init_noise_sigma
|
400 |
+
return latents
|
401 |
+
|
402 |
+
def encode_image(self, image, device, num_images_per_prompt):
|
403 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
404 |
+
|
405 |
+
if image.dtype == np.float32:
|
406 |
+
image = (image * 255).astype(np.uint8)
|
407 |
+
|
408 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
409 |
+
image = image.to(device=device, dtype=dtype)
|
410 |
+
|
411 |
+
image_embeds = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
412 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
413 |
+
|
414 |
+
return torch.zeros_like(image_embeds), image_embeds
|
415 |
+
|
416 |
+
def encode_image_latents(self, image, device, num_images_per_prompt):
|
417 |
+
|
418 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
419 |
+
|
420 |
+
image = torch.from_numpy(image).unsqueeze(0).permute(0, 3, 1, 2).to(device=device) # [1, 3, H, W]
|
421 |
+
image = 2 * image - 1
|
422 |
+
image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False)
|
423 |
+
image = image.to(dtype=dtype)
|
424 |
+
|
425 |
+
posterior = self.vae.encode(image).latent_dist
|
426 |
+
latents = posterior.sample() * self.vae.config.scaling_factor # [B, C, H, W]
|
427 |
+
latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
|
428 |
+
|
429 |
+
return torch.zeros_like(latents), latents
|
430 |
+
|
431 |
+
@torch.no_grad()
|
432 |
+
def __call__(
|
433 |
+
self,
|
434 |
+
prompt: str = "",
|
435 |
+
image: Optional[np.ndarray] = None,
|
436 |
+
height: int = 256,
|
437 |
+
width: int = 256,
|
438 |
+
elevation: float = 0,
|
439 |
+
num_inference_steps: int = 50,
|
440 |
+
guidance_scale: float = 7.0,
|
441 |
+
negative_prompt: str = "",
|
442 |
+
num_images_per_prompt: int = 1,
|
443 |
+
eta: float = 0.0,
|
444 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
445 |
+
output_type: Optional[str] = "numpy", # pil, numpy, latents
|
446 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
447 |
+
callback_steps: int = 1,
|
448 |
+
num_frames: int = 4,
|
449 |
+
device=torch.device("cuda:0"),
|
450 |
+
):
|
451 |
+
self.unet = self.unet.to(device=device)
|
452 |
+
self.vae = self.vae.to(device=device)
|
453 |
+
self.text_encoder = self.text_encoder.to(device=device)
|
454 |
+
|
455 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
456 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
457 |
+
# corresponds to doing no classifier free guidance.
|
458 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
459 |
+
|
460 |
+
# Prepare timesteps
|
461 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
462 |
+
timesteps = self.scheduler.timesteps
|
463 |
+
|
464 |
+
# imagedream variant
|
465 |
+
if image is not None:
|
466 |
+
assert isinstance(image, np.ndarray) and image.dtype == np.float32
|
467 |
+
self.image_encoder = self.image_encoder.to(device=device)
|
468 |
+
image_embeds_neg, image_embeds_pos = self.encode_image(image, device, num_images_per_prompt)
|
469 |
+
image_latents_neg, image_latents_pos = self.encode_image_latents(image, device, num_images_per_prompt)
|
470 |
+
|
471 |
+
_prompt_embeds = self._encode_prompt(
|
472 |
+
prompt=prompt,
|
473 |
+
device=device,
|
474 |
+
num_images_per_prompt=num_images_per_prompt,
|
475 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
476 |
+
negative_prompt=negative_prompt,
|
477 |
+
) # type: ignore
|
478 |
+
prompt_embeds_neg, prompt_embeds_pos = _prompt_embeds.chunk(2)
|
479 |
+
|
480 |
+
# Prepare latent variables
|
481 |
+
actual_num_frames = num_frames if image is None else num_frames + 1
|
482 |
+
latents: torch.Tensor = self.prepare_latents(
|
483 |
+
actual_num_frames * num_images_per_prompt,
|
484 |
+
4,
|
485 |
+
height,
|
486 |
+
width,
|
487 |
+
prompt_embeds_pos.dtype,
|
488 |
+
device,
|
489 |
+
generator,
|
490 |
+
None,
|
491 |
+
)
|
492 |
+
|
493 |
+
if image is not None:
|
494 |
+
camera = get_camera(num_frames, elevation=elevation, extra_view=True).to(dtype=latents.dtype, device=device)
|
495 |
+
else:
|
496 |
+
camera = get_camera(num_frames, elevation=elevation, extra_view=False).to(dtype=latents.dtype, device=device)
|
497 |
+
camera = camera.repeat_interleave(num_images_per_prompt, dim=0)
|
498 |
+
|
499 |
+
# Prepare extra step kwargs.
|
500 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
501 |
+
|
502 |
+
# Denoising loop
|
503 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
504 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
505 |
+
for i, t in enumerate(timesteps):
|
506 |
+
# expand the latents if we are doing classifier free guidance
|
507 |
+
multiplier = 2 if do_classifier_free_guidance else 1
|
508 |
+
latent_model_input = torch.cat([latents] * multiplier)
|
509 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
510 |
+
|
511 |
+
unet_inputs = {
|
512 |
+
'x': latent_model_input,
|
513 |
+
'timesteps': torch.tensor([t] * actual_num_frames * multiplier, dtype=latent_model_input.dtype, device=device),
|
514 |
+
'context': torch.cat([prompt_embeds_neg] * actual_num_frames + [prompt_embeds_pos] * actual_num_frames),
|
515 |
+
'num_frames': actual_num_frames,
|
516 |
+
'camera': torch.cat([camera] * multiplier),
|
517 |
+
}
|
518 |
+
|
519 |
+
if image is not None:
|
520 |
+
unet_inputs['ip'] = torch.cat([image_embeds_neg] * actual_num_frames + [image_embeds_pos] * actual_num_frames)
|
521 |
+
unet_inputs['ip_img'] = torch.cat([image_latents_neg] + [image_latents_pos]) # no repeat
|
522 |
+
|
523 |
+
# predict the noise residual
|
524 |
+
noise_pred = self.unet.forward(**unet_inputs)
|
525 |
+
|
526 |
+
# perform guidance
|
527 |
+
if do_classifier_free_guidance:
|
528 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
529 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
530 |
+
noise_pred_text - noise_pred_uncond
|
531 |
+
)
|
532 |
+
|
533 |
+
# compute the previous noisy sample x_t -> x_t-1
|
534 |
+
latents: torch.Tensor = self.scheduler.step(
|
535 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
536 |
+
)[0]
|
537 |
+
|
538 |
+
# call the callback, if provided
|
539 |
+
if i == len(timesteps) - 1 or (
|
540 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
541 |
+
):
|
542 |
+
progress_bar.update()
|
543 |
+
if callback is not None and i % callback_steps == 0:
|
544 |
+
callback(i, t, latents) # type: ignore
|
545 |
+
|
546 |
+
# Post-processing
|
547 |
+
if output_type == "latent":
|
548 |
+
image = latents
|
549 |
+
elif output_type == "pil":
|
550 |
+
image = self.decode_latents(latents)
|
551 |
+
image = self.numpy_to_pil(image)
|
552 |
+
else: # numpy
|
553 |
+
image = self.decode_latents(latents)
|
554 |
+
|
555 |
+
# Offload last model to CPU
|
556 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
557 |
+
self.final_offload_hook.offload()
|
558 |
+
|
559 |
+
return image
|
requirements.txt
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu118
|
2 |
+
torch
|
3 |
+
--extra-index-url https://download.pytorch.org/whl/cu118
|
4 |
+
xformers
|
5 |
+
numpy
|
6 |
+
tyro
|
7 |
+
diffusers
|
8 |
+
dearpygui
|
9 |
+
einops
|
10 |
+
accelerate
|
11 |
+
gradio
|
12 |
+
imageio
|
13 |
+
imageio-ffmpeg
|
14 |
+
lpips
|
15 |
+
matplotlib
|
16 |
+
packaging
|
17 |
+
Pillow
|
18 |
+
pygltflib
|
19 |
+
rembg[gpu,cli]
|
20 |
+
rich
|
21 |
+
safetensors
|
22 |
+
scikit-image
|
23 |
+
scikit-learn
|
24 |
+
scipy
|
25 |
+
tqdm
|
26 |
+
transformers
|
27 |
+
trimesh
|
28 |
+
kiui >= 0.2.3
|
29 |
+
xatlas
|
30 |
+
roma
|