Omnibus's picture
Update app.py
6971ec3 verified
import gradio as gr
#import urllib.request
import requests
import bs4
import lxml
import os
#import subprocess
from huggingface_hub import InferenceClient,HfApi
import random
import json
import datetime
from pypdf import PdfReader
import uuid
#from query import tasks
from agent import (
PREFIX,
GET_CHART,
COMPRESS_DATA_PROMPT,
COMPRESS_DATA_PROMPT_SMALL,
LOG_PROMPT,
LOG_RESPONSE,
)
api=HfApi()
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def find_all(url):
return_list=[]
print (url)
#if action_input in query.tasks:
print (f"trying URL:: {url}")
try:
if url != "" and url != None:
out = []
source = requests.get(url)
#source = urllib.request.urlopen(url).read()
soup = bs4.BeautifulSoup(source.content,'lxml')
rawp=(f'RAW TEXT RETURNED: {soup.text}')
cnt=0
cnt+=len(rawp)
out.append(rawp)
out.append("HTML fragments: ")
q=("a","p","span","content","article")
for p in soup.find_all("a"):
out.append([{"LINK TITLE":p.get('title'),"URL":p.get('href'),"STRING":p.string}])
print(rawp)
return True, rawp
else:
return False, "Enter Valid URL"
except Exception as e:
print (e)
return False, f'Error: {e}'
#else:
# history = "observation: The search query I used did not return a valid response"
return "MAIN", None, history, task
def read_txt(txt_path):
text=""
with open(txt_path,"r") as f:
text = f.read()
f.close()
print (text)
return text
def read_pdf(pdf_path):
text=""
reader = PdfReader(f'{pdf_path}')
number_of_pages = len(reader.pages)
for i in range(number_of_pages):
page = reader.pages[i]
text = f'{text}\n{page.extract_text()}'
print (text)
return text
error_box=[]
def read_pdf_online(url):
uid=uuid.uuid4()
print(f"reading {url}")
response = requests.get(url, stream=True)
print(response.status_code)
text=""
#################
#####################
try:
if response.status_code == 200:
with open("test.pdf", "wb") as f:
f.write(response.content)
#f.close()
#out = Path("./data.pdf")
#print (out)
reader = PdfReader("test.pdf")
number_of_pages = len(reader.pages)
print(number_of_pages)
for i in range(number_of_pages):
page = reader.pages[i]
text = f'{text}\n{page.extract_text()}'
print(f"PDF_TEXT:: {text}")
return text
else:
text = response.status_code
error_box.append(url)
print(text)
return text
except Exception as e:
print (e)
return e
VERBOSE = True
MAX_HISTORY = 100
MAX_DATA = 20000
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_gpt_no_prefix(
prompt_template,
stop_tokens,
max_tokens,
seed,
**prompt_kwargs,
):
print(seed)
try:
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=max_tokens,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = prompt_template.format(**prompt_kwargs)
#if VERBOSE:
print(LOG_PROMPT.format(content))
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
#formatted_prompt = format_prompt(f'{content}', history)
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
#yield resp
#if VERBOSE:
print(LOG_RESPONSE.format(resp))
return resp
except Exception as e:
print(f'no_prefix_error:: {e}')
return "Error"
def run_gpt(
prompt_template,
stop_tokens,
max_tokens,
seed,
**prompt_kwargs,
):
print(seed)
timestamp=datetime.datetime.now()
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=max_tokens,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = PREFIX.format(
timestamp=timestamp,
purpose="Compile the provided data and complete the users task"
) + prompt_template.format(**prompt_kwargs)
#if VERBOSE:
print(LOG_PROMPT.format(content))
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
#formatted_prompt = format_prompt(f'{content}', history)
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
#yield resp
if VERBOSE:
print(LOG_RESPONSE.format(resp))
return resp
def compress_data(c, instruct, history):
seed=random.randint(1,1000000000)
print (c)
#tot=len(purpose)
#print(tot)
divr=int(c)/MAX_DATA
divi=int(divr)+1 if divr != int(divr) else int(divr)
chunk = int(int(c)/divr)
print(f'chunk:: {chunk}')
print(f'divr:: {divr}')
print (f'divi:: {divi}')
out = []
#out=""
s=0
e=chunk
print(f'e:: {e}')
new_history=""
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
for z in range(divi):
print(f's:e :: {s}:{e}')
hist = history[s:e]
resp = run_gpt(
COMPRESS_DATA_PROMPT_SMALL,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=8192,
seed=seed,
direction=instruct,
knowledge="",
history=hist,
).strip("\n")
out.append(resp)
#new_history = resp
print (resp)
#out+=resp
e=e+chunk
s=s+chunk
return out
def compress_data_og(c, instruct, history):
seed=random.randint(1,1000000000)
print (c)
#tot=len(purpose)
#print(tot)
divr=int(c)/MAX_DATA
divi=int(divr)+1 if divr != int(divr) else int(divr)
chunk = int(int(c)/divr)
print(f'chunk:: {chunk}')
print(f'divr:: {divr}')
print (f'divi:: {divi}')
out = []
#out=""
s=0
e=chunk
print(f'e:: {e}')
new_history=""
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
for z in range(divi):
print(f's:e :: {s}:{e}')
hist = history[s:e]
resp = run_gpt(
COMPRESS_DATA_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=8192,
seed=seed,
direction=instruct,
knowledge=new_history,
history=hist,
).strip("\n")
new_history = resp
print (resp)
out+=resp
e=e+chunk
s=s+chunk
'''
resp = run_gpt(
COMPRESS_DATA_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=8192,
seed=seed,
direction=instruct,
knowledge=new_history,
history="All data has been recieved.",
)'''
print ("final" + resp)
#history = "observation: {}\n".format(resp)
return resp
def get_chart(inp):
seed=random.randint(1,1000000000)
try:
resp = run_gpt_no_prefix(
GET_CHART,
stop_tokens=[],
max_tokens=8192,
seed=seed,
inp=inp,
).strip("\n")
print(resp)
except Exception as e:
print(f'Error:: {e}')
resp = e
return resp
def format_json(inp):
print("FORMATTING:::")
print(type(inp))
print("###########")
print(inp)
print("###########")
print("###########")
new_str=""
matches=["```","#","//"]
for i,line in enumerate(inp):
line = line.strip()
print(line)
#if not any(x in line for x in matches):
new_str+=line.strip("\n").strip("```").strip("#").strip("//")
print("###########")
print("###########")
#inp = inp.strip("<\s>")
new_str=new_str.strip("</s>")
out_json=eval(new_str)
print(out_json)
print("###########")
print("###########")
return out_json
def summarize(inp,history,report_check,chart_check,data=None,files=None,directory=None,url=None,pdf_url=None,pdf_batch=None):
json_box=[]
error_box=""
if inp == "":
inp = "Process this data"
history.clear()
history = [(inp,"Working on it...")]
yield "",history,error_box,json_box
if pdf_batch.startswith("http"):
c=0
data=""
for i in str(pdf_batch):
if i==",":
c+=1
print (f'c:: {c}')
try:
for i in range(c+1):
batch_url = pdf_batch.split(",",c)[i]
bb = read_pdf_online(batch_url)
data=f'{data}\nFile Name URL ({batch_url}):\n{bb}'
except Exception as e:
print(e)
#data=f'{data}\nError reading URL ({batch_url})'
if directory:
for ea in directory:
print(ea)
if pdf_url.startswith("http"):
print("PDF_URL")
out = read_pdf_online(pdf_url)
data=out
if url.startswith("http"):
val, out = find_all(url)
if not val:
data="Error"
rawp = str(out)
else:
data=out
if files:
for i, file in enumerate(files):
try:
print (file)
if file.endswith(".pdf"):
zz=read_pdf(file)
print (zz)
data=f'{data}\nFile Name ({file}):\n{zz}'
elif file.endswith(".txt"):
zz=read_txt(file)
print (zz)
data=f'{data}\nFile Name ({file}):\n{zz}'
except Exception as e:
data=f'{data}\nError opening File Name ({file})'
print (e)
if data != "Error" and data != "":
print(inp)
out = str(data)
rl = len(out)
print(f'rl:: {rl}')
c=1
for i in str(out):
if i == " " or i=="," or i=="\n":
c +=1
print (f'c:: {c}')
json_out = compress_data(c,inp,out)
#json_box.append(json_out)
#json_object = json.dumps(eval(json_out), indent=4)
#json_box.append(json_out)
print(f'JSON_BOX:: {json_out}')
# Writing to sample.json
#with open("tmp.json", "w") as outfile:
# outfile.write(json_object)
#outfile.close()
#json_box.append(json_out)
out = str(json_out)
if report_check:
rl = len(out)
print(f'rl:: {rl}')
c=1
for i in str(out):
if i == " " or i=="," or i=="\n":
c +=1
print (f'c2:: {c}')
rawp = compress_data_og(c,inp,out)
else:
rawp = out
try:
json_out=format_json(json_out)
except Exception as e:
print (e)
if chart_check:
print (f"making chart from ::: {rawp}")
error_box = get_chart(str(json_out))
print(error_box)
else:
rawp = "Provide a valid data source"
#print (rawp)
#print (f'out:: {out}')
#history += "observation: the search results are:\n {}\n".format(out)
#task = "complete?"
history.clear()
history.append((inp,rawp))
yield "", history,error_box,json_out
#################################
def clear_fn():
return "",[(None,None)]
with gr.Blocks() as app:
gr.HTML("""<center><h1>Mixtral 8x7B TLDR Summarizer + Web</h1><h3>Summarize Data of unlimited length</h3>""")
chatbot = gr.Chatbot(label="Mixtral 8x7B Chatbot",show_copy_button=True)
with gr.Row():
with gr.Column(scale=3):
prompt=gr.Textbox(label = "Instructions (optional)")
with gr.Column(scale=1):
report_check=gr.Checkbox(label="Return Report", value=True)
chart_check=gr.Checkbox(label="Return Chart", value=True)
button=gr.Button()
#models_dd=gr.Dropdown(choices=[m for m in return_list],interactive=True)
with gr.Row():
stop_button=gr.Button("Stop")
clear_btn = gr.Button("Clear")
with gr.Row():
with gr.Tab("Text"):
data=gr.Textbox(label="Input Data (paste text)", lines=6)
with gr.Tab("File"):
file=gr.Files(label="Input File(s) (.pdf .txt)")
with gr.Tab("Folder"):
directory=gr.File(label="Folder", file_count='directory')
with gr.Tab("Raw HTML"):
url = gr.Textbox(label="URL")
with gr.Tab("PDF URL"):
pdf_url = gr.Textbox(label="PDF URL")
with gr.Tab("PDF Batch"):
pdf_batch = gr.Textbox(label="PDF URL Batch (comma separated)")
e_box=gr.Textbox()
json_out=gr.JSON()
#text=gr.JSON()
#inp_query.change(search_models,inp_query,models_dd)
clear_btn.click(clear_fn,None,[prompt,chatbot])
go=button.click(summarize,[prompt,chatbot,report_check,chart_check,data,file,directory,url,pdf_url,pdf_batch],[prompt,chatbot,e_box,json_out])
stop_button.click(None,None,None,cancels=[go])
app.queue(default_concurrency_limit=20).launch(show_api=False)