import gradio as gr import torchaudio import torch import os import time import soundfile as sf languages = { "English": "eng", "Hindi": "hin", "Portuguese": "por", "Russian": "rus", "Spanish": "spa" } welcome_message = """ # Welcome to Tonic's Unity On Device! Tonic's Unity On Device uses [facebook/seamless-m4t-unity-small](https://huggingface.co/facebook/seamless-m4t-unity-small) for audio translation & accessibility. Tonic's Unity On Device!🚀 on your own data & in your own way by cloning this space. Simply click here: Duplicate Space ### Join us : TeamTonic is always making cool demos! Join our active builder's community on Discord: [Discord](https://discord.gg/GWpVpekp) On Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)" """ def save_and_resample_audio(input_audio_path, output_audio_path, resample_rate=16000): waveform, sample_rate = torchaudio.load(input_audio_path) resampler = torchaudio.transforms.Resample(sample_rate, resample_rate, dtype=waveform.dtype) resampled_waveform = resampler(waveform) torchaudio.save(output_audio_path, resampled_waveform, resample_rate) def save_audio(audio_input, output_dir="saved_audio", resample_rate=16000): if not os.path.exists(output_dir): os.makedirs(output_dir) sample_rate, audio_data = audio_input file_name = f"audio_{int(time.time())}.wav" file_path = os.path.join(output_dir, file_name) sf.write(file_path, audio_data, sample_rate) resampled_file_path = os.path.join(output_dir, f"resampled_{file_name}") save_and_resample_audio(file_path, resampled_file_path, resample_rate) return resampled_file_path def speech_to_text(audio_data, tgt_lang): file_path = save_audio(audio_data) audio_input, _ = torchaudio.load(file_path) s2t_model = torch.jit.load("unity_on_device.ptl", map_location=torch.device('cpu')) with torch.no_grad(): model_output = s2t_model(audio_input, tgt_lang=languages[tgt_lang]) transcribed_text = model_output[0] if model_output else "" print("Speech to Text Model Output:", transcribed_text) return transcribed_text def speech_to_speech_translation(audio_data, tgt_lang): file_path = save_audio(audio_data) audio_input, _ = torchaudio.load(file_path) s2st_model = torch.jit.load("unity_on_device.ptl", map_location=torch.device('cpu')) with torch.no_grad(): translated_text, units, waveform = s2st_model(audio_input, tgt_lang=languages[tgt_lang]) output_file = "/tmp/result.wav" torchaudio.save(output_file, waveform.unsqueeze(0), sample_rate=16000) print("Translated Text:", translated_text) print("Units:", units) print("Waveform Shape:", waveform.shape) return translated_text, output_file def create_interface(): with gr.Blocks(theme='ParityError/Anime') as interface: gr.Markdown(welcome_message) input_language = gr.Dropdown(list(languages.keys()), label="Select Target Language", value="English") with gr.Accordion("Speech to Text", open=False) as stt_accordion: audio_input_stt = gr.Audio(label="Upload or Record Audio") text_output_stt = gr.Text(label="Transcribed Text") stt_button = gr.Button("Transcribe") stt_button.click(speech_to_text, inputs=[audio_input_stt, input_language], outputs=text_output_stt) gr.Examples([["audio1.wav"]], inputs=[audio_input_stt], outputs=[text_output_stt]) with gr.Accordion("Speech to Speech Translation", open=False) as s2st_accordion: audio_input_s2st = gr.Audio(label="Upload or Record Audio") text_output_s2st = gr.Text(label="Translated Text") audio_output_s2st = gr.Audio(label="Translated Audio", type="filepath") s2st_button = gr.Button("Translate") s2st_button.click(speech_to_speech_translation, inputs=[audio_input_s2st, input_language], outputs=[text_output_s2st, audio_output_s2st]) gr.Examples([["audio1.wav"]], inputs=[audio_input_s2st], outputs=[text_output_s2st, audio_output_s2st]) return interface app = create_interface() app.launch(show_error=True, debug=True)