Spaces:
Sleeping
Sleeping
import numpy | |
numpy.set_printoptions(suppress=True) | |
def open_audio(filename=None, lib='auto'): | |
if filename is None: | |
from tkinter.filedialog import askopenfilename | |
filename = askopenfilename(title='select song', filetypes=[("mp3", ".mp3"),("wav", ".wav"),("flac", ".flac"),("ogg", ".ogg"),("wma", ".wma")]) | |
filename=filename.replace('\\', '/') | |
if lib=='pedalboard.io': | |
from pedalboard.io import AudioFile | |
with AudioFile(filename) as f: | |
audio = f.read(f.frames) | |
samplerate = f.samplerate | |
elif lib=='librosa': | |
import librosa | |
audio, samplerate = librosa.load(filename, sr=None, mono=False) | |
elif lib=='soundfile': | |
import soundfile | |
audio, samplerate = soundfile.read(filename) | |
audio=audio.T | |
elif lib=='madmom': | |
import madmom | |
audio, samplerate = madmom.io.audio.load_audio_file(filename, dtype=float) | |
audio=audio.T | |
# elif lib=='pydub': | |
# from pydub import AudioSegment | |
# song=AudioSegment.from_file(filename) | |
# audio = song.get_array_of_samples() | |
# samplerate=song.frame_rate | |
# print(audio) | |
# print(filename) | |
elif lib=='auto': | |
for i in ('madmom', 'soundfile', 'librosa', 'pedalboard.io'): | |
try: | |
audio,samplerate=open_audio(filename, i) | |
break | |
except Exception as e: | |
print(e) | |
if len(audio)<2: audio=[audio,audio] | |
return audio,samplerate | |
def generate_sidechain(samplerate=44100, length=0.5, curve=2, vol0=0, vol1=1, smoothing=40) ->numpy.array: | |
x=numpy.concatenate((numpy.linspace(1,0,smoothing),numpy.linspace(vol0,vol1,int(length*samplerate))**curve)) | |
return(x,x) | |
def outputfilename(output, filename, suffix='_beatswap'): | |
if not (output.lower().endswith('.mp3') or output.lower().endswith('.wav') or output.lower().endswith('.flac') or output.lower().endswith('.ogg') or | |
output.lower().endswith('.aac') or output.lower().endswith('.ac3') or output.lower().endswith('.aiff') or output.lower().endswith('.wma')): | |
return output+''.join(''.join(filename.split('/')[-1]).split('.')[:-1])+suffix+'.mp3' | |
def generate_sine(len, freq, samplerate, volume=1): | |
return numpy.sin(numpy.linspace(0, freq*3.1415926*2*len, int(len*samplerate)))*volume | |
def generate_saw(len, freq, samplerate, volume=1): | |
return (numpy.linspace(0, freq*2*len, int(len*samplerate))%2 - 1)*volume | |
def generate_square(len, freq, samplerate, volume=1): | |
return ((numpy.linspace(0, freq*2*len, int(len*samplerate)))//1%2 * 2 - 1)*volume | |
class song: | |
def __init__(self, filename:str=None, audio:numpy.array=None, samplerate:int=None, beatmap:list=None): | |
"""song can be loaded from path to an audio file, or from a list/numpy array and samplerate. Audio array should have values from -1 to 1, multiple channels should be stacked vertically. Optionally you can provide your own beat map.""" | |
if filename is None: | |
from tkinter.filedialog import askopenfilename | |
self.filename = askopenfilename(title='select song', filetypes=[("mp3", ".mp3"),("wav", ".wav"),("flac", ".flac"),("ogg", ".ogg"),("wma", ".wma")]) | |
self.audio, self.samplerate=open_audio(self.filename) | |
else: | |
self.filename=filename | |
if audio is None or samplerate is None: | |
self.audio, self.samplerate=open_audio(self.filename) | |
else: self.audio, self.samplerate = audio, samplerate | |
self.beatmap=beatmap | |
self.filename=self.filename.replace('\\', '/') | |
self.samplerate=int(self.samplerate) | |
def write_audio(self, output:str, lib:str='auto'): | |
""""writes audio""" | |
if lib=='pedalboard.io': | |
if not isinstance(self.audio,numpy.ndarray): self.audio=numpy.asarray(self.audio) | |
#print(audio) | |
from pedalboard.io import AudioFile | |
with AudioFile(output, 'w', self.samplerate, self.audio.shape[0]) as f: | |
f.write(self.audio) | |
elif lib=='soundfile': | |
if not isinstance(self.audio,numpy.ndarray): self.audio=numpy.asarray(self.audio) | |
audio=self.audio.T | |
import soundfile | |
soundfile.write(output, audio, self.samplerate) | |
del audio | |
elif lib=='auto': | |
for i in ('pedalboard.io', 'soundfile'): | |
try: | |
song.write_audio(self, output, i) | |
break | |
except Exception as e: | |
print(e) | |
# elif lib=='pydub': | |
# from pydub import AudioSegment | |
# song = AudioSegment(self.audio.tobytes(), frame_rate=self.samplerate, sample_width=2, channels=2) | |
# format = output.split('.')[-1] | |
# if len(format) > 4: | |
# format='mp3' | |
# output = output + '.' + format | |
# song.export(output, format=format) | |
def beatmap_scale(self, scale:float): | |
import math | |
if scale!=1: | |
a=0 | |
b=numpy.array([]) | |
while a <len( self.beatmap[:-math.ceil(scale)]): | |
b=numpy.append(b, (1-(a%1))*self.beatmap[math.floor(a)]+(a%1)*self.beatmap[math.ceil(a)]) | |
a+=scale | |
self.beatmap=b | |
def analyze_beats(self, lib='madmom.BeatDetectionProcessor', caching=True, split=None): | |
#if audio is None and filename is None: (audio, samplerate) = open_audio() | |
if caching is True: | |
id=hex(len(self.audio[0])) | |
import os | |
if not os.path.exists('SavedBeatmaps'): | |
os.mkdir('SavedBeatmaps') | |
cacheDir="SavedBeatmaps/" + ''.join(self.filename.split('/')[-1]) + "_"+lib+"_"+id+'.txt' | |
try: | |
self.beatmap=numpy.loadtxt(cacheDir, dtype=int) | |
self.bpm=numpy.average(self.beatmap)/self.samplerate | |
return | |
except OSError: pass | |
if lib.split('.')[0]=='madmom': | |
from collections.abc import MutableMapping, MutableSequence | |
import madmom | |
if lib=='madmom.BeatTrackingProcessor': | |
proc = madmom.features.beats.BeatTrackingProcessor(fps=100) | |
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate)) | |
self.beatmap= proc(act)*self.samplerate | |
if lib=='madmom.BeatTrackingProcessor.constant': | |
proc = madmom.features.beats.BeatTrackingProcessor(fps=100, look_ahead=None) | |
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate)) | |
self.beatmap= proc(act)*self.samplerate | |
if lib=='madmom.BeatTrackingProcessor.consistent': | |
proc = madmom.features.beats.BeatTrackingProcessor(fps=100, look_ahead=None, look_aside=0) | |
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate)) | |
self.beatmap= proc(act)*self.samplerate | |
elif lib=='madmom.BeatDetectionProcessor': | |
proc = madmom.features.beats.BeatDetectionProcessor(fps=100) | |
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate)) | |
self.beatmap= proc(act)*self.samplerate | |
elif lib=='madmom.BeatDetectionProcessor.consistent': | |
proc = madmom.features.beats.BeatDetectionProcessor(fps=100, look_aside=0) | |
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate)) | |
self.beatmap= proc(act)*self.samplerate | |
elif lib=='madmom.CRFBeatDetectionProcessor': | |
proc = madmom.features.beats.CRFBeatDetectionProcessor(fps=100) | |
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate)) | |
self.beatmap= proc(act)*self.samplerate | |
elif lib=='madmom.CRFBeatDetectionProcessor.constant': | |
proc = madmom.features.beats.CRFBeatDetectionProcessor(fps=100, use_factors=True, factors=[0.5, 1, 2]) | |
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate)) | |
self.beatmap= proc(act)*self.samplerate | |
elif lib=='madmom.DBNBeatTrackingProcessor': | |
proc = madmom.features.beats.DBNBeatTrackingProcessor(fps=100) | |
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate)) | |
self.beatmap= proc(act)*self.samplerate | |
elif lib=='madmom.DBNBeatTrackingProcessor.1000': | |
proc = madmom.features.beats.DBNBeatTrackingProcessor(fps=100, transition_lambda=1000) | |
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate)) | |
self.beatmap= proc(act)*self.samplerate | |
elif lib=='madmom.MultiModelSelectionProcessor': #broken | |
proc = madmom.features.beats.RNNBeatProcessor(post_processor=None) | |
predictions = proc(madmom.audio.signal.Signal(self.audio.T, self.samplerate)) | |
mm_proc = madmom.features.beats.MultiModelSelectionProcessor(num_ref_predictions=None) | |
self.beatmap= numpy.sort(mm_proc(predictions)*self.samplerate) | |
elif lib=='madmom.DBNDownBeatTrackingProcessor': | |
proc = madmom.features.downbeats.DBNDownBeatTrackingProcessor(beats_per_bar=[4], fps=100) | |
act = madmom.features.downbeats.RNNDownBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate)) | |
self.beatmap= proc(act)*self.samplerate | |
self.beatmap=self.beatmap[:,0] | |
elif lib=='madmom.PatternTrackingProcessor': #broken | |
from madmom.models import PATTERNS_BALLROOM | |
proc = madmom.features.downbeats.PatternTrackingProcessor(PATTERNS_BALLROOM, fps=50) | |
from madmom.audio.spectrogram import LogarithmicSpectrogramProcessor, SpectrogramDifferenceProcessor, MultiBandSpectrogramProcessor | |
from madmom.processors import SequentialProcessor | |
log = LogarithmicSpectrogramProcessor() | |
diff = SpectrogramDifferenceProcessor(positive_diffs=True) | |
mb = MultiBandSpectrogramProcessor(crossover_frequencies=[270]) | |
pre_proc = SequentialProcessor([log, diff, mb]) | |
act = pre_proc(madmom.audio.signal.Signal(self.audio.T, self.samplerate)) | |
self.beatmap= proc(act)*self.samplerate | |
self.beatmap=self.beatmap[:,0] | |
elif lib=='madmom.DBNBarTrackingProcessor': #broken | |
beats = song.analyze_beats(self,lib='madmom.DBNBeatTrackingProcessor', caching = caching) | |
proc = madmom.features.downbeats.DBNBarTrackingProcessor(beats_per_bar=[4], fps=100) | |
act = madmom.features.downbeats.RNNBarProcessor()(((madmom.audio.signal.Signal(self.audio.T, self.samplerate)), beats)) | |
self.beatmap= proc(act)*self.samplerate | |
elif lib=='librosa': #broken in 3.9, works in 3.8 | |
import librosa | |
beat_frames = librosa.beat.beat_track(y=self.audio[0], sr=self.samplerate,hop_length=512) | |
self.beatmap = librosa.frames_to_samples(beat_frames[1]) | |
# elif lib=='BeatNet': | |
# from BeatNet.BeatNet import BeatNet # doesn't seem to work well for some reason | |
# estimator = BeatNet(1, mode='offline', inference_model='DBN', plot=[], thread=False) | |
# beatmap = estimator.process(filename) | |
# beatmap=beatmap[:,0]*samplerate | |
# elif lib=='jump-reward-inference': # doesn't seem to work well for some reason | |
# from jump_reward_inference.joint_tracker import joint_inference | |
# estimator = joint_inference(1, plot=False) | |
# beatmap = estimator.process(filename) | |
# beatmap=beatmap[:,0]*samplerate | |
elif lib=='split': | |
self.beatmap= list(range(0, len(self.audio), len(self.audio)//split)) | |
if lib.split('.')[0]=='madmom': | |
self.beatmap=numpy.absolute(self.beatmap-500) | |
if caching is True: numpy.savetxt(cacheDir, self.beatmap.astype(int), fmt='%d') | |
self.bpm=numpy.average(self.beatmap)/self.samplerate | |
self.beatmap=self.beatmap.astype(int) | |
def audio_autotrim(self): | |
n=0 | |
for i in self.audio[0]: | |
if i>=0.0001:break | |
n+=1 | |
self.audio = numpy.asarray([self.audio[0,n:], self.audio[1,n:]]) | |
#print(beatmap) | |
if self.beatmap is not None: | |
self.beatmap=numpy.absolute(self.beatmap-n) | |
else: | |
print('It is recommended to only use autotrim after computing the beatmap') | |
def beatmap_autoscale(self): | |
bpm=(self.beatmap[-1]-self.beatmap[0])/(len(self.beatmap)-1) | |
#print('BPM =', (bpm/samplerate) * 240, bpm) | |
if bpm>=160000: scale=1/8 | |
elif (bpm)>=80000: scale=1/4 | |
elif (bpm)>=40000: scale=1/2 | |
elif (bpm)<=20000: scale=2 | |
elif (bpm)<=10000: scale=4 | |
elif (bpm)<=5000: scale=8 | |
song.beatmap_scale(self,scale) | |
def beatmap_autoinsert(self): | |
diff=(self.beatmap[1]-self.beatmap[0]) | |
a=0 | |
while diff<self.beatmap[0] and a<100: | |
self.beatmap=numpy.insert(self.beatmap, 0, self.beatmap[0]-diff) | |
a+=1 | |
def beatmap_shift(self, shift: float): | |
if shift>0: | |
for i in range(len(self.beatmap)-1): | |
self.beatmap[i] = self.beatmap[i] + shift * (self.beatmap[i+1] - self.beatmap[i]) | |
elif shift<0: | |
for i in reversed(range(len(self.beatmap)-1)): | |
self.beatmap[i+1] = self.beatmap[i+1] - shift * (self.beatmap[i] - self.beatmap[i+1]) | |
def beatmap_trim(self, start=0, end=None): | |
start*=self.samplerate | |
self.beatmap=self.beatmap[self.beatmap>=start].astype(int) | |
if end is not None: self.beatmap=self.beatmap[self.beatmap<=end].astype(int) | |
def beatswap(self, pattern: str, sep=',', smoothing=40, smoothing_mode='replace'): | |
import math, numpy | |
# get pattern size | |
size=0 | |
#cut processing??? not worth it, it is really fast anyways | |
pattern=pattern.replace(' ', '').split(sep) | |
for j in pattern: | |
s='' | |
if '?' not in j: | |
for i in j: | |
if i.isdigit() or i=='.' or i=='-' or i=='/' or i=='+' or i=='%': s=str(s)+str(i) | |
elif i==':': | |
if s=='': s='0' | |
#print(s, eval(s)) | |
size=max(math.ceil(float(eval(s))), size) | |
s='' | |
elif s!='': break | |
if s=='': s='0' | |
if s=='': s='0' | |
size=max(math.ceil(float(eval(s))), size) | |
if isinstance(self.audio,numpy.ndarray): self.audio=numpy.ndarray.tolist(self.audio) | |
if self.beatmap.dtype!='int32': self.beatmap=self.beatmap.astype(int) | |
#beat=[] | |
#start=audio[:beatmap[0]] | |
#end=audio[beatmap[-1]:audio[-1]] | |
#for i in range(len(beatmap)-1): | |
# beat[i]=audio[beatmap[i]:beatmap[i+1]] | |
# audio is a tuple with l and r channels | |
#print(len(audio)) | |
self.audio=(self.audio[0], self.audio[1]) | |
#print(beatmap[0], audio[0][100]) | |
result=(self.audio[0][:self.beatmap[0]],self.audio[1][:self.beatmap[0]]) | |
beat=numpy.asarray([[],[]]) | |
# size, iterations are integers | |
size=int(max(size//1, 1)) | |
# add beat to the end | |
self.beatmap=numpy.unique(numpy.abs(numpy.append(self.beatmap, len(self.audio[0])))) | |
iterations=int(len(self.beatmap)//size) | |
if 'random' in pattern[0].lower(): | |
import random | |
for i in range(len(self.beatmap)): | |
choice=random.randint(1,len(self.beatmap)-1) | |
for a in range(len(self.audio)): | |
beat=self.audio[a][self.beatmap[choice-1]:self.beatmap[choice]-smoothing] | |
if smoothing>0: result[a].extend(numpy.linspace(result[a][-1],beat[0],smoothing)) | |
result[a].extend(beat) | |
self.audio = result | |
return | |
if 'reverse' in pattern[0].lower(): | |
for a in range(len(self.audio)): | |
for i in list(reversed(range(len(self.beatmap))))[:-1]: | |
beat=self.audio[a][self.beatmap[i-1]:self.beatmap[i]-smoothing] | |
#print(self.beatmap[i-1],self.beatmap[i]) | |
#print(result[a][-1], beat[0]) | |
if smoothing>0: result[a].extend(numpy.linspace(result[a][-1],beat[0],smoothing)) | |
result[a].extend(beat) | |
self.audio = result | |
return | |
#print(len(result[0])) | |
def beatswap_getnum(i: str, c: str): | |
if c in i: | |
try: | |
x=i.index(c)+1 | |
z='' | |
try: | |
while i[x].isdigit() or i[x]=='.' or i[x]=='-' or i[x]=='/' or i[x]=='+' or i[x]=='%': | |
z+=i[x] | |
x+=1 | |
return z | |
except IndexError: | |
return z | |
except ValueError: return None | |
#print(len(self.beatmap), size, iterations) | |
# processing | |
for j in range(iterations+1): | |
for i in pattern: | |
if '!' not in i: | |
n,s,st,reverse,z=0,'',None,False,None | |
for c in i: | |
n+=1 | |
#print('c =', s, ', st =', st, ', s =', s, ', n =,',n) | |
# Get the character | |
if c.isdigit() or c=='.' or c=='-' or c=='/' or c=='+' or c=='%': | |
s=str(s)+str(c) | |
# If character is : - get start | |
elif s!='' and c==':': | |
#print ('Beat start:',s,'=', eval(s),'=',int(eval(s)//1), '+',j,'*',size,' =',int(eval(s)//1)+j*size, ', mod=',eval(s)%1) | |
try: st=self.beatmap[int(eval(s)//1)+j*size ] + eval(s)%1* (self.beatmap[int(eval(s)//1)+j*size +1] - self.beatmap[int(eval(s)//1)+j*size]) | |
except IndexError: break | |
s='' | |
# create a beat | |
if s!='' and (n==len(i) or not(c.isdigit() or c=='.' or c=='-' or c=='/' or c=='+' or c=='%')): | |
# start already exists | |
if st is not None: | |
#print ('Beat end: ',s,'=', eval(s),'=',int(eval(s)//1), '+',j,'*',size,' =',int(eval(s)//1)+j*size, ', mod=',eval(s)%1) | |
try: | |
s=self.beatmap[int(eval(s)//1)+j*size ] + eval(s)%1* (self.beatmap[int(eval(s)//1)+j*size +1] - self.beatmap[int(eval(s)//1)+j*size]) | |
#print(s) | |
except IndexError: break | |
else: | |
# start doesn't exist | |
#print ('Beat start:',s,'=', eval(s),'=',int(eval(s)//1), '+',j,'*',size,'- 1 =',int(eval(s)//1)+j*size, ', mod=',eval(s)%1) | |
#print ('Beat end: ',s,'=', eval(s),'=',int(eval(s)//1), '+',j,'*',size,' =',int(eval(s)//1)+j*size+1, ', mod=',eval(s)%1) | |
try: | |
st=self.beatmap[int(eval(s)//1)+j*size-1 ] + eval(s)%1* (self.beatmap[int(eval(s)//1)+j*size +1] - self.beatmap[int(eval(s)//1)+j*size]) | |
s=self.beatmap[int(eval(s)//1)+j*size ] + eval(s)%1* (self.beatmap[int(eval(s)//1)+j*size +1] - self.beatmap[int(eval(s)//1)+j*size]) | |
except IndexError: break | |
if st>s: | |
s, st=st, s | |
reverse=True | |
# create the beat | |
if len(self.audio)>1: | |
if smoothing_mode=='add': beat=numpy.asarray([self.audio[0][int(st):int(s)],self.audio[1][int(st):int(s)]]) | |
else: beat=numpy.asarray([self.audio[0][int(st):int(s)-smoothing],self.audio[1][int(st):int(s)-smoothing]]) | |
else: | |
if smoothing_mode=='add': beat=numpy.asarray([self.audio[0][int(st):int(s)]]) | |
else: beat=numpy.asarray([self.audio[0][int(st):int(s)-smoothing]]) | |
# process the beat | |
# channels | |
z=beatswap_getnum(i,'c') | |
if z is not None: | |
if z=='': beat[0],beat[1]=beat[1],beat[0] | |
elif eval(z)==0:beat[0]*=0 | |
else:beat[1]*=0 | |
# volume | |
z=beatswap_getnum(i,'v') | |
if z is not None: | |
if z=='': z='0' | |
beat*=eval(z) | |
z=beatswap_getnum(i,'t') | |
if z is not None: | |
if z=='': z='2' | |
beat**=1/eval(z) | |
# speed | |
z=beatswap_getnum(i,'s') | |
if z is not None: | |
if z=='': z='2' | |
z=eval(z) | |
if z<1: | |
beat=numpy.asarray((numpy.repeat(beat[0],int(1//z)),numpy.repeat(beat[1],int(1//z)))) | |
else: | |
beat=numpy.asarray((beat[0,::int(z)],beat[1,::int(z)])) | |
# bitcrush | |
z=beatswap_getnum(i,'b') | |
if z is not None: | |
if z=='': z='3' | |
z=1/eval(z) | |
if z<1: beat=beat*z | |
beat=numpy.around(beat, max(int(z), 1)) | |
if z<1: beat=beat/z | |
# downsample | |
z=beatswap_getnum(i,'d') | |
if z is not None: | |
if z=='': z='3' | |
z=int(eval(z)) | |
beat=numpy.asarray((numpy.repeat(beat[0,::z],z),numpy.repeat(beat[1,::z],z))) | |
# convert to list | |
beat=beat.tolist() | |
# effects with list | |
# reverse | |
if ('r' in i and reverse is False) or (reverse is True and 'r' not in i): | |
beat=(beat[0][::-1],beat[1][::-1] ) | |
# add beat to the result | |
for a in range(len(self.audio)): | |
#print('Adding beat... a, s, st:', a, s, st, sep=', ') | |
#print(result[a][-1]) | |
#print(beat[a][0]) | |
if smoothing>0: result[a].extend(numpy.linspace(result[a][-1],beat[a][0],smoothing)) | |
result[a].extend(beat[a]) | |
#print(len(result[0])) | |
# | |
break | |
#print(time.process_time() - benchmark) | |
self.audio = result | |
def beatsample(self, audio2, shift=0): | |
try: l=len(audio2[0]) | |
except (TypeError, IndexError): | |
l=len(audio2) | |
audio2=numpy.vstack((audio2,audio2)) | |
for i in range(len(self.beatmap)): | |
try: self.audio[:,int(self.beatmap[i]) + int(float(shift) * (int(self.beatmap[i+1])-int(self.beatmap[i]))) : int(self.beatmap[i])+int(float(shift) * (int(self.beatmap[i+1])-int(self.beatmap[i])))+int(l)]+=audio2 | |
except (IndexError, ValueError): pass | |
def sidechain(self, audio2, shift=0, smoothing=40): | |
try: l=len(audio2[0]) | |
except (TypeError, IndexError): | |
l=len(audio2) | |
audio2=numpy.vstack((audio2,audio2)) | |
for i in range(len(self.beatmap)): | |
try: self.audio[:,int(self.beatmap[i])-smoothing + int(float(shift) * (int(self.beatmap[i+1])-int(self.beatmap[i]))) : int(self.beatmap[i])-smoothing+int(float(shift) * (int(self.beatmap[i+1])-int(self.beatmap[i])))+int(l)]*=audio2 | |
except (IndexError, ValueError): break | |
def quick_beatswap(self, output:str='', pattern:str=None, scale:float=1, shift:float=0, start:float=0, end:float=None, autotrim:bool=True, autoscale:bool=False, autoinsert:bool=False, suffix:str='_BeatSwap', lib:str='madmom.BeatDetectionProcessor'): | |
"""Generates beatmap if it isn't generated, applies beatswapping to the song and writes the processed song it next to the .py file. If you don't want to write the file, set output=None | |
output: can be a relative or an absolute path to a folder or to a file. Filename will be created from the original filename + a suffix to avoid overwriting. If path already contains a filename which ends with audio file extension, such as .mp3, that filename will be used. | |
pattern: the beatswapping pattern. | |
scale: scales the beatmap, for example if generated beatmap is two times faster than the song you can slow it down by putting 0.5. | |
shift: shifts the beatmap by this amount of unscaled beats | |
start: position in seconds, beats before the position will not be manipulated | |
end: position in seconds, same. Set to None by default. | |
autotrim: trims silence in the beginning for better beat detection, True by default | |
autoscale: scales beats so that they are between 10000 and 20000 samples long. Useful when you are processing a lot of files with similar BPMs, False by default. | |
autoinsert: uses distance between beats and inserts beats at the beginning at that distance if possible. Set to False by default, sometimes it can fix shifted beatmaps and sometimes can add unwanted shift. | |
suffix: suffix that will be appended to the filename | |
lib: beat detection library""" | |
if self.beatmap is None: song.analyze_beats(self,lib=lib) | |
if autotrim is True: song.audio_autotrim(self) | |
save=self.beatmap | |
if autoscale is True: song.beatmap_autoscale(self) | |
if shift!=0: song.beatmap_shift(self,shift) | |
if scale!=1: song.beatmap_scale(self,scale) | |
if autoinsert is True: song.beatmap_autoinsert(self) | |
if start!=0 or end is not None: song.beatmap_trim(self,start, end) | |
song.beatswap(self,pattern) | |
if output is not None: | |
if not (output.lower().endswith('.mp3') or output.lower().endswith('.wav') or output.lower().endswith('.flac') or output.lower().endswith('.ogg') or | |
output.lower().endswith('.aac') or output.lower().endswith('.ac3') or output.lower().endswith('.aiff') or output.lower().endswith('.wma')): | |
output=output+''.join(''.join(self.filename.split('/')[-1]).split('.')[:-1])+suffix+'.mp3' | |
song.write_audio(self,output) | |
self.beatmap=save | |
def quick_sidechain(self, output:str='', audio2:numpy.array=None, scale:float=1, shift:float=0, start:float=0, end:float=None, autotrim:bool=True, autoscale:bool=False, autoinsert:bool=False, filename2:str=None, suffix:str='_Sidechain', lib:str='madmom.BeatDetectionProcessor'): | |
"""Generates beatmap if it isn't generated, applies fake sidechain on each beat to the song and writes the processed song it next to the .py file. If you don't want to write the file, set output=None | |
output: can be a relative or an absolute path to a folder or to a file. Filename will be created from the original filename + a suffix to avoid overwriting. If path already contains a filename which ends with audio file extension, such as .mp3, that filename will be used. | |
audio2: sidechain impulse, basically a curve that the volume will be multiplied by. By default one will be generated with generate_sidechain() | |
scale: scales the beatmap, for example if generated beatmap is two times faster than the song you can slow it down by putting 0.5. | |
shift: shifts the beatmap by this amount of unscaled beats | |
start: position in seconds, beats before the position will not be manipulated | |
end: position in seconds, same. Set to None by default. | |
autotrim: trims silence in the beginning for better beat detection, True by default | |
autoscale: scales beats so that they are between 10000 and 20000 samples long. Useful when you are processing a lot of files with similar BPMs, False by default. | |
autoinsert: uses distance between beats and inserts beats at the beginning at that distance if possible. Set to False by default, sometimes it can fix shifted beatmaps and sometimes can add unwanted shift. | |
filename2: loads sidechain impulse from the file if audio2 if not specified | |
suffix: suffix that will be appended to the filename | |
lib: beat detection library""" | |
if filename2 is None and audio2 is None: | |
audio2=generate_sidechain() | |
if audio2 is None: | |
audio2, samplerate2=open_audio(filename2) | |
if self.beatmap is None: song.analyze_beats(self,lib=lib) | |
if autotrim is True: song.audio_autotrim(self) | |
save=self.beatmap | |
if autoscale is True: song.beatmap_autoscale(self) | |
if shift!=0: song.beatmap_shift(self,shift) | |
if scale!=1: song.beatmap_scale(self,scale) | |
if autoinsert is True: song.beatmap_autoinsert(self) | |
if start!=0 or end is not None: song.beatmap_trim(self,start, end) | |
song.sidechain(self,audio2) | |
if output is not None: | |
if not (output.lower().endswith('.mp3') or output.lower().endswith('.wav') or output.lower().endswith('.flac') or output.lower().endswith('.ogg') or | |
output.lower().endswith('.aac') or output.lower().endswith('.ac3') or output.lower().endswith('.aiff') or output.lower().endswith('.wma')): | |
output=output+''.join(''.join(self.filename.split('/')[-1]).split('.')[:-1])+suffix+'.mp3' | |
song.write_audio(self,output) | |
self.beatmap=save | |
def quick_beatsample(self, output:str='', filename2:str=None, scale:float=1, shift:float=0, start:float=0, end:float=None, autotrim:bool=True, autoscale:bool=False, autoinsert:bool=False, audio2:numpy.array=None, suffix:str='_BeatSample', lib:str='madmom.BeatDetectionProcessor'): | |
"""Generates beatmap if it isn't generated, adds chosen sample to each beat of the song and writes the processed song it next to the .py file. If you don't want to write the file, set output=None | |
output: can be a relative or an absolute path to a folder or to a file. Filename will be created from the original filename + a suffix to avoid overwriting. If path already contains a filename which ends with audio file extension, such as .mp3, that filename will be used. | |
filename2: path to the sample. | |
scale: scales the beatmap, for example if generated beatmap is two times faster than the song you can slow it down by putting 0.5. | |
shift: shifts the beatmap by this amount of unscaled beats | |
start: position in seconds, beats before the position will not be manipulated | |
end: position in seconds, same. Set to None by default. | |
autotrim: trims silence in the beginning for better beat detection, True by default | |
autoscale: scales beats so that they are between 10000 and 20000 samples long. Useful when you are processing a lot of files with similar BPMs, False by default. | |
autoinsert: uses distance between beats and inserts beats at the beginning at that distance if possible. Set to False by default, sometimes it can fix shifted beatmaps and sometimes can add unwanted shift. | |
suffix: suffix that will be appended to the filename | |
lib: beat detection library""" | |
if filename2 is None and audio2 is None: | |
from tkinter.filedialog import askopenfilename | |
filename2 = askopenfilename(title='select sidechain impulse', filetypes=[("mp3", ".mp3"),("wav", ".wav"),("flac", ".flac"),("ogg", ".ogg"),("wma", ".wma")]) | |
if audio2 is None: | |
audio2, samplerate2=open_audio(filename2) | |
if self.beatmap is None: song.analyze_beats(self,lib=lib) | |
if autotrim is True: song.audio_autotrim(self) | |
save=numpy.copy(self.beatmap) | |
if autoscale is True: song.beatmap_autoscale(self) | |
if shift!=0: song.beatmap_shift(self,shift) | |
if scale!=1: song.beatmap_scale(self,scale) | |
if autoinsert is True: song.beatmap_autoinsert(self) | |
if start!=0 or end is not None: song.beatmap_trim(self,start, end) | |
song.beatsample(self,audio2) | |
if output is not None: | |
if not (output.lower().endswith('.mp3') or output.lower().endswith('.wav') or output.lower().endswith('.flac') or output.lower().endswith('.ogg') or | |
output.lower().endswith('.aac') or output.lower().endswith('.ac3') or output.lower().endswith('.aiff') or output.lower().endswith('.wma')): | |
output=output+''.join(''.join(self.filename.split('/')[-1]).split('.')[:-1])+suffix+'.mp3' | |
song.write_audio(self,output) | |
self.beatmap=save | |
def audio_spectogram(self, hop_length:int=512): | |
self.hop_length=hop_length | |
import librosa | |
self.spectogram=librosa.feature.melspectrogram(y=self.audio, sr=self.samplerate, hop_length=hop_length) | |
def spectogram_audio(self): | |
import librosa | |
self.audio=librosa.feature.inverse.mel_to_audio(M=numpy.swapaxes(numpy.swapaxes(numpy.dstack(( self.spectogram[0,:,:], self.spectogram[1,:,:])), 0, 2), 1,2), sr=self.samplerate, hop_length=self.hop_length) | |
def write_image(self): | |
"""Turns song into an image based on beat positions. Currently semi-broken""" | |
import cv2 | |
audio=self.audio[0].tolist() | |
height=len(audio)/len(self.beatmap) | |
width=len(self.beatmap) | |
height*=3 | |
if height>width: | |
increase_length=int(height/width) | |
reduce_width=1 | |
else: | |
reduce_width=int(width/height) | |
increase_length=1 | |
increase_length/=10 | |
reduce_width*=10 | |
image=[audio[0:self.beatmap[0]]] | |
maximum=len(image) | |
for i in range(len(self.beatmap)-1): | |
image.append(audio[self.beatmap[i]:self.beatmap[i+1]]) | |
maximum=max(maximum,len(image[i])) | |
for i in range(len(image)): | |
image[i].extend((maximum-len(image[i]))*[0]) | |
image[i]=image[i][::reduce_width] | |
audio=self.audio[1].tolist() | |
image2=[audio[0:self.beatmap[0]]] | |
for i in range(len(self.beatmap)-1): | |
image2.append(audio[self.beatmap[i]:self.beatmap[i+1]]) | |
for i in range(len(image2)): | |
image2[i].extend((maximum-len(image2[i]))*[0]) | |
image2[i]=image2[i][::reduce_width] | |
print(len(image[i]), len(image2[i])) | |
image=numpy.asarray(image)*255 | |
image2=numpy.asarray(image2)*255 | |
image3=numpy.add(image, image2)/2 | |
image,image2,image3=numpy.repeat(image,increase_length,axis=0),numpy.repeat(image2,increase_length,axis=0),numpy.repeat(image3,increase_length,axis=0) | |
image=cv2.merge([image.T,image2.T, image3.T]) | |
#image=image.astype('uint8') | |
#image=cv2.resize(image, (0,0), fx=len(image)) | |
cv2.imwrite('cv2_output.png', image) | |
def fix_beatmap(filename, lib='madmom.BeatDetectionProcessor', scale=1, shift=0): | |
track=song(filename) | |
track.analyze_beats(lib=lib) | |
track.beatmap_shift(shift) | |
track.beatmap_scale(scale) | |
id=hex(len(track.audio[0])) | |
import os | |
if not os.path.exists('SavedBeatmaps'): | |
os.mkdir('SavedBeatmaps') | |
cacheDir="SavedBeatmaps/" + ''.join(track.filename.split('/')[-1]) + "_"+lib+"_"+id+'.txt' | |
a=input(f'Are you sure you want to overwrite {cacheDir} using scale = {scale}; shift = {shift}? ("n" to cancel): ') | |
if 'n' in a.lower(): return | |
else: numpy.savetxt(cacheDir, track.beatmap.astype(int), fmt='%d') | |
def delete_beatmap(filename, lib='madmom.BeatDetectionProcessor'): | |
track=open_audio(filename)[0] | |
id=hex(len(track.audio[0])) | |
import os | |
if not os.path.exists('SavedBeatmaps'): | |
os.mkdir('SavedBeatmaps') | |
cacheDir="SavedBeatmaps/" + ''.join(track.filename.split('/')[-1]) + "_"+lib+"_"+id+'.txt' | |
a=input(f'Are you sure you want to delete {cacheDir}? ("n" to cancel): ') | |
if 'n' in a.lower(): return | |
else: os.remove(cacheDir) | |