Spaces:
Runtime error
Runtime error
from pathlib import Path | |
import argparse | |
from functools import partial | |
import gradio as gr | |
import torch | |
from torchaudio.functional import resample | |
import utils.train_util as train_util | |
def load_model(cfg, | |
ckpt_path, | |
device): | |
model = train_util.init_model_from_config(cfg["model"]) | |
ckpt = torch.load(ckpt_path, "cpu") | |
train_util.load_pretrained_model(model, ckpt) | |
model.eval() | |
model = model.to(device) | |
tokenizer = train_util.init_obj_from_dict(cfg["tokenizer"]) | |
if not tokenizer.loaded: | |
tokenizer.load_state_dict(ckpt["tokenizer"]) | |
model.set_index(tokenizer.bos, tokenizer.eos, tokenizer.pad) | |
return model, tokenizer | |
def infer(file, runner): | |
sr, wav = file | |
wav = torch.as_tensor(wav) | |
if wav.dtype == torch.short: | |
wav = wav / 2 ** 15 | |
elif wav.dtype == torch.int: | |
wav = wav / 2 ** 31 | |
if wav.ndim > 1: | |
wav = wav.mean(1) | |
wav = resample(wav, sr, runner.target_sr) | |
wav_len = len(wav) | |
wav = wav.float().unsqueeze(0).to(runner.device) | |
input_dict = { | |
"mode": "inference", | |
"wav": wav, | |
"wav_len": [wav_len], | |
"specaug": False, | |
"sample_method": "beam", | |
"beam_size": 3, | |
} | |
with torch.no_grad(): | |
output_dict = runner.model(input_dict) | |
seq = output_dict["seq"].cpu().numpy() | |
cap = runner.tokenizer.decode(seq)[0] | |
return cap | |
# def input_toggle(input_type): | |
# if input_type == "file": | |
# return gr.update(visible=True), gr.update(visible=False) | |
# elif input_type == "mic": | |
# return gr.update(visible=False), gr.update(visible=True) | |
class InferRunner: | |
def __init__(self, model_name): | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
exp_dir = Path(f"./checkpoints/{model_name.lower()}") | |
cfg = train_util.load_config(exp_dir / "config.yaml") | |
self.model, self.tokenizer = load_model(cfg, exp_dir / "ckpt.pth", self.device) | |
self.target_sr = cfg["target_sr"] | |
def change_model(self, model_name): | |
exp_dir = Path(f"./checkpoints/{model_name.lower()}") | |
cfg = train_util.load_config(exp_dir / "config.yaml") | |
self.model, self.tokenizer = load_model(cfg, exp_dir / "ckpt.pth", self.device) | |
self.target_sr = cfg["target_sr"] | |
def change_model(radio): | |
global infer_runner | |
infer_runner.change_model(radio) | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
gr.Markdown("# Lightweight EfficientNetB2-Transformer Audio Captioning") | |
with gr.Row(): | |
gr.Markdown(""" | |
[![arXiv](https://img.shields.io/badge/arXiv-2407.14329-brightgreen.svg?style=flat-square)](https://arxiv.org/abs/2407.14329) | |
[![github](https://img.shields.io/badge/GitHub-Code-blue?logo=Github&style=flat-square)](https://github.com/wsntxxn/AudioCaption?tab=readme-ov-file#lightweight-effb2-transformer-model) | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
radio = gr.Radio( | |
["AudioCaps", "Clotho"], | |
value="AudioCaps", | |
label="Select model" | |
) | |
infer_runner = InferRunner(radio.value) | |
file = gr.Audio(label="Input", visible=True) | |
radio.change(fn=change_model, inputs=[radio,],) | |
btn = gr.Button("Run") | |
with gr.Column(): | |
output = gr.Textbox(label="Output") | |
btn.click( | |
fn=partial(infer, | |
runner=infer_runner), | |
inputs=[file,], | |
outputs=output | |
) | |
demo.launch() | |