Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
from typing import Dict | |
import torch | |
import torch.nn as nn | |
from utils.model_util import mean_with_lens, repeat_tensor | |
class CaptionMetaMixin: | |
pad_idx = 0 | |
start_idx = 1 | |
end_idx = 2 | |
max_length = 20 | |
def set_index(cls, start_idx, end_idx, pad_idx): | |
cls.start_idx = start_idx | |
cls.end_idx = end_idx | |
cls.pad_idx = pad_idx | |
class CaptionModel(nn.Module, CaptionMetaMixin): | |
""" | |
Encoder-decoder captioning model. | |
""" | |
def __init__(self, encoder: nn.Module, decoder: nn.Module, **kwargs): | |
super().__init__() | |
self.encoder = encoder | |
self.decoder = decoder | |
self.vocab_size = decoder.vocab_size | |
self.train_forward_keys = ["cap", "cap_len", "ss_ratio"] | |
self.inference_forward_keys = ["sample_method", "max_length", "temp"] | |
freeze_encoder = kwargs.get("freeze_encoder", False) | |
if freeze_encoder: | |
for param in self.encoder.parameters(): | |
param.requires_grad = False | |
self.check_decoder_compatibility() | |
def check_decoder_compatibility(self): | |
compatible_decoders = [x.__class__.__name__ for x in self.compatible_decoders] | |
assert isinstance(self.decoder, self.compatible_decoders), \ | |
f"{self.decoder.__class__.__name__} is incompatible with " \ | |
f"{self.__class__.__name__}, please use decoder in {compatible_decoders} " | |
def forward(self, input_dict: Dict): | |
""" | |
input_dict: { | |
(required) | |
mode: train/inference, | |
[spec, spec_len], | |
[fc], | |
[attn, attn_len], | |
[wav, wav_len], | |
[sample_method: greedy], | |
[temp: 1.0] (in case of no teacher forcing) | |
(optional, mode=train) | |
cap, | |
cap_len, | |
ss_ratio, | |
(optional, mode=inference) | |
sample_method: greedy/beam, | |
max_length, | |
temp, | |
beam_size (optional, sample_method=beam), | |
n_best (optional, sample_method=beam), | |
} | |
""" | |
encoder_output_dict = self.encoder(input_dict) | |
output = self.forward_decoder(input_dict, encoder_output_dict) | |
return output | |
def forward_decoder(self, input_dict: Dict, encoder_output_dict: Dict): | |
if input_dict["mode"] == "train": | |
forward_dict = { | |
"mode": "train", "sample_method": "greedy", "temp": 1.0 | |
} | |
for key in self.train_forward_keys: | |
forward_dict[key] = input_dict[key] | |
forward_dict.update(encoder_output_dict) | |
output = self.train_forward(forward_dict) | |
elif input_dict["mode"] == "inference": | |
forward_dict = {"mode": "inference"} | |
default_args = { "sample_method": "greedy", "max_length": self.max_length, "temp": 1.0 } | |
for key in self.inference_forward_keys: | |
if key in input_dict: | |
forward_dict[key] = input_dict[key] | |
else: | |
forward_dict[key] = default_args[key] | |
if forward_dict["sample_method"] == "beam": | |
forward_dict["beam_size"] = input_dict.get("beam_size", 3) | |
forward_dict["n_best"] = input_dict.get("n_best", False) | |
forward_dict["n_best_size"] = input_dict.get("n_best_size", forward_dict["beam_size"]) | |
elif forward_dict["sample_method"] == "dbs": | |
forward_dict["beam_size"] = input_dict.get("beam_size", 6) | |
forward_dict["group_size"] = input_dict.get("group_size", 3) | |
forward_dict["diversity_lambda"] = input_dict.get("diversity_lambda", 0.5) | |
forward_dict["group_nbest"] = input_dict.get("group_nbest", True) | |
forward_dict.update(encoder_output_dict) | |
output = self.inference_forward(forward_dict) | |
else: | |
raise Exception("mode should be either 'train' or 'inference'") | |
output.update(encoder_output_dict) | |
return output | |
def prepare_output(self, input_dict): | |
output = {} | |
batch_size = input_dict["fc_emb"].size(0) | |
if input_dict["mode"] == "train": | |
max_length = input_dict["cap"].size(1) - 1 | |
elif input_dict["mode"] == "inference": | |
max_length = input_dict["max_length"] | |
else: | |
raise Exception("mode should be either 'train' or 'inference'") | |
device = input_dict["fc_emb"].device | |
output["seq"] = torch.full((batch_size, max_length), self.end_idx, | |
dtype=torch.long) | |
output["logit"] = torch.empty(batch_size, max_length, | |
self.vocab_size).to(device) | |
output["sampled_logprob"] = torch.zeros(batch_size, max_length) | |
output["embed"] = torch.empty(batch_size, max_length, | |
self.decoder.d_model).to(device) | |
return output | |
def train_forward(self, input_dict): | |
if input_dict["ss_ratio"] != 1: # scheduled sampling training | |
input_dict["mode"] = "train" | |
return self.stepwise_forward(input_dict) | |
output = self.seq_forward(input_dict) | |
self.train_process(output, input_dict) | |
return output | |
def seq_forward(self, input_dict): | |
raise NotImplementedError | |
def train_process(self, output, input_dict): | |
pass | |
def inference_forward(self, input_dict): | |
if input_dict["sample_method"] == "beam": | |
return self.beam_search(input_dict) | |
elif input_dict["sample_method"] == "dbs": | |
return self.diverse_beam_search(input_dict) | |
return self.stepwise_forward(input_dict) | |
def stepwise_forward(self, input_dict): | |
"""Step-by-step decoding""" | |
output = self.prepare_output(input_dict) | |
max_length = output["seq"].size(1) | |
# start sampling | |
for t in range(max_length): | |
input_dict["t"] = t | |
self.decode_step(input_dict, output) | |
if input_dict["mode"] == "inference": # decide whether to stop when sampling | |
unfinished_t = output["seq"][:, t] != self.end_idx | |
if t == 0: | |
unfinished = unfinished_t | |
else: | |
unfinished *= unfinished_t | |
output["seq"][:, t][~unfinished] = self.end_idx | |
if unfinished.sum() == 0: | |
break | |
self.stepwise_process(output) | |
return output | |
def decode_step(self, input_dict, output): | |
"""Decoding operation of timestep t""" | |
decoder_input = self.prepare_decoder_input(input_dict, output) | |
# feed to the decoder to get logit | |
output_t = self.decoder(decoder_input) | |
logit_t = output_t["logit"] | |
# assert logit_t.ndim == 3 | |
if logit_t.size(1) == 1: | |
logit_t = logit_t.squeeze(1) | |
embed_t = output_t["embed"].squeeze(1) | |
elif logit_t.size(1) > 1: | |
logit_t = logit_t[:, -1, :] | |
embed_t = output_t["embed"][:, -1, :] | |
else: | |
raise Exception("no logit output") | |
# sample the next input word and get the corresponding logit | |
sampled = self.sample_next_word(logit_t, | |
method=input_dict["sample_method"], | |
temp=input_dict["temp"]) | |
output_t.update(sampled) | |
output_t["t"] = input_dict["t"] | |
output_t["logit"] = logit_t | |
output_t["embed"] = embed_t | |
self.stepwise_process_step(output, output_t) | |
def prepare_decoder_input(self, input_dict, output): | |
"""Prepare the inp ut dict for the decoder""" | |
raise NotImplementedError | |
def stepwise_process_step(self, output, output_t): | |
"""Postprocessing (save output values) after each timestep t""" | |
t = output_t["t"] | |
output["logit"][:, t, :] = output_t["logit"] | |
output["seq"][:, t] = output_t["word"] | |
output["sampled_logprob"][:, t] = output_t["probs"] | |
output["embed"][:, t, :] = output_t["embed"] | |
def stepwise_process(self, output): | |
"""Postprocessing after the whole step-by-step autoregressive decoding""" | |
pass | |
def sample_next_word(self, logit, method, temp): | |
"""Sample the next word, given probs output by the decoder""" | |
logprob = torch.log_softmax(logit, dim=1) | |
if method == "greedy": | |
sampled_logprob, word = torch.max(logprob.detach(), 1) | |
elif method == "gumbel": | |
def sample_gumbel(shape, eps=1e-20): | |
U = torch.rand(shape).to(logprob.device) | |
return -torch.log(-torch.log(U + eps) + eps) | |
def gumbel_softmax_sample(logit, temperature): | |
y = logit + sample_gumbel(logit.size()) | |
return torch.log_softmax(y / temperature, dim=-1) | |
_logprob = gumbel_softmax_sample(logprob, temp) | |
_, word = torch.max(_logprob.data, 1) | |
sampled_logprob = logprob.gather(1, word.unsqueeze(-1)) | |
else: | |
logprob = logprob / temp | |
if method.startswith("top"): | |
top_num = float(method[3:]) | |
if 0 < top_num < 1: # top-p sampling | |
probs = torch.softmax(logit, dim=1) | |
sorted_probs, sorted_indices = torch.sort(probs, descending=True, dim=1) | |
_cumsum = sorted_probs.cumsum(1) | |
mask = _cumsum < top_num | |
mask = torch.cat([torch.ones_like(mask[:,:1]), mask[:,:-1]], 1) | |
sorted_probs = sorted_probs * mask.to(sorted_probs) | |
sorted_probs = sorted_probs / sorted_probs.sum(1, keepdim=True) | |
logprob.scatter_(1, sorted_indices, sorted_probs.log()) | |
else: # top-k sampling | |
k = int(top_num) | |
tmp = torch.empty_like(logprob).fill_(float('-inf')) | |
topk, indices = torch.topk(logprob, k, dim=1) | |
tmp = tmp.scatter(1, indices, topk) | |
logprob = tmp | |
word = torch.distributions.Categorical(logits=logprob.detach()).sample() | |
sampled_logprob = logprob.gather(1, word.unsqueeze(-1)).squeeze(1) | |
word = word.detach().long() | |
# sampled_logprob: [N,], word: [N,] | |
return {"word": word, "probs": sampled_logprob} | |
def beam_search(self, input_dict): | |
output = self.prepare_output(input_dict) | |
max_length = input_dict["max_length"] | |
beam_size = input_dict["beam_size"] | |
if input_dict["n_best"]: | |
n_best_size = input_dict["n_best_size"] | |
batch_size, max_length = output["seq"].size() | |
output["seq"] = torch.full((batch_size, n_best_size, max_length), | |
self.end_idx, dtype=torch.long) | |
temp = input_dict["temp"] | |
# instance by instance beam seach | |
for i in range(output["seq"].size(0)): | |
output_i = self.prepare_beamsearch_output(input_dict) | |
input_dict["sample_idx"] = i | |
for t in range(max_length): | |
input_dict["t"] = t | |
output_t = self.beamsearch_step(input_dict, output_i) | |
####################################### | |
# merge with previous beam and select the current max prob beam | |
####################################### | |
logit_t = output_t["logit"] | |
if logit_t.size(1) == 1: | |
logit_t = logit_t.squeeze(1) | |
elif logit_t.size(1) > 1: | |
logit_t = logit_t[:, -1, :] | |
else: | |
raise Exception("no logit output") | |
logprob_t = torch.log_softmax(logit_t, dim=1) | |
logprob_t = torch.log_softmax(logprob_t / temp, dim=1) | |
logprob_t = output_i["topk_logprob"].unsqueeze(1) + logprob_t | |
if t == 0: # for the first step, all k seq will have the same probs | |
topk_logprob, topk_words = logprob_t[0].topk( | |
beam_size, 0, True, True) | |
else: # unroll and find top logprob, and their unrolled indices | |
topk_logprob, topk_words = logprob_t.view(-1).topk( | |
beam_size, 0, True, True) | |
topk_words = topk_words.cpu() | |
output_i["topk_logprob"] = topk_logprob | |
# output_i["prev_words_beam"] = topk_words // self.vocab_size # [beam_size,] | |
output_i["prev_words_beam"] = torch.div(topk_words, self.vocab_size, | |
rounding_mode='trunc') | |
output_i["next_word"] = topk_words % self.vocab_size # [beam_size,] | |
if t == 0: | |
output_i["seq"] = output_i["next_word"].unsqueeze(1) | |
else: | |
output_i["seq"] = torch.cat([ | |
output_i["seq"][output_i["prev_words_beam"]], | |
output_i["next_word"].unsqueeze(1)], dim=1) | |
# add finished beams to results | |
is_end = output_i["next_word"] == self.end_idx | |
if t == max_length - 1: | |
is_end.fill_(1) | |
for beam_idx in range(beam_size): | |
if is_end[beam_idx]: | |
final_beam = { | |
"seq": output_i["seq"][beam_idx].clone(), | |
"score": output_i["topk_logprob"][beam_idx].item() | |
} | |
final_beam["score"] = final_beam["score"] / (t + 1) | |
output_i["done_beams"].append(final_beam) | |
output_i["topk_logprob"][is_end] -= 1000 | |
self.beamsearch_process_step(output_i, output_t) | |
self.beamsearch_process(output, output_i, input_dict) | |
return output | |
def prepare_beamsearch_output(self, input_dict): | |
beam_size = input_dict["beam_size"] | |
device = input_dict["fc_emb"].device | |
output = { | |
"topk_logprob": torch.zeros(beam_size).to(device), | |
"seq": None, | |
"prev_words_beam": None, | |
"next_word": None, | |
"done_beams": [], | |
} | |
return output | |
def beamsearch_step(self, input_dict, output_i): | |
decoder_input = self.prepare_beamsearch_decoder_input(input_dict, output_i) | |
output_t = self.decoder(decoder_input) | |
output_t["t"] = input_dict["t"] | |
return output_t | |
def prepare_beamsearch_decoder_input(self, input_dict, output_i): | |
raise NotImplementedError | |
def beamsearch_process_step(self, output_i, output_t): | |
pass | |
def beamsearch_process(self, output, output_i, input_dict): | |
i = input_dict["sample_idx"] | |
done_beams = sorted(output_i["done_beams"], key=lambda x: -x["score"]) | |
if input_dict["n_best"]: | |
done_beams = done_beams[:input_dict["n_best_size"]] | |
for out_idx, done_beam in enumerate(done_beams): | |
seq = done_beam["seq"] | |
output["seq"][i][out_idx, :len(seq)] = seq | |
else: | |
seq = done_beams[0]["seq"] | |
output["seq"][i][:len(seq)] = seq | |
def diverse_beam_search(self, input_dict): | |
def add_diversity(seq_table, logprob, t, divm, diversity_lambda, bdash): | |
local_time = t - divm | |
unaug_logprob = logprob.clone() | |
if divm > 0: | |
change = torch.zeros(logprob.size(-1)) | |
for prev_choice in range(divm): | |
prev_decisions = seq_table[prev_choice][..., local_time] | |
for prev_labels in range(bdash): | |
change.scatter_add_(0, prev_decisions[prev_labels], change.new_ones(1)) | |
change = change.to(logprob.device) | |
logprob = logprob - repeat_tensor(change, bdash) * diversity_lambda | |
return logprob, unaug_logprob | |
output = self.prepare_output(input_dict) | |
group_size = input_dict["group_size"] | |
batch_size = output["seq"].size(0) | |
beam_size = input_dict["beam_size"] | |
bdash = beam_size // group_size | |
input_dict["bdash"] = bdash | |
diversity_lambda = input_dict["diversity_lambda"] | |
device = input_dict["fc_emb"].device | |
max_length = input_dict["max_length"] | |
temp = input_dict["temp"] | |
group_nbest = input_dict["group_nbest"] | |
batch_size, max_length = output["seq"].size() | |
if group_nbest: | |
output["seq"] = torch.full((batch_size, beam_size, max_length), | |
self.end_idx, dtype=torch.long) | |
else: | |
output["seq"] = torch.full((batch_size, group_size, max_length), | |
self.end_idx, dtype=torch.long) | |
for i in range(batch_size): | |
input_dict["sample_idx"] = i | |
seq_table = [torch.LongTensor(bdash, 0) for _ in range(group_size)] # group_size x [bdash, 0] | |
logprob_table = [torch.zeros(bdash).to(device) for _ in range(group_size)] | |
done_beams_table = [[] for _ in range(group_size)] | |
output_i = { | |
"prev_words_beam": [None for _ in range(group_size)], | |
"next_word": [None for _ in range(group_size)], | |
"state": [None for _ in range(group_size)] | |
} | |
for t in range(max_length + group_size - 1): | |
input_dict["t"] = t | |
for divm in range(group_size): | |
input_dict["divm"] = divm | |
if t >= divm and t <= max_length + divm - 1: | |
local_time = t - divm | |
decoder_input = self.prepare_dbs_decoder_input(input_dict, output_i) | |
output_t = self.decoder(decoder_input) | |
output_t["divm"] = divm | |
logit_t = output_t["logit"] | |
if logit_t.size(1) == 1: | |
logit_t = logit_t.squeeze(1) | |
elif logit_t.size(1) > 1: | |
logit_t = logit_t[:, -1, :] | |
else: | |
raise Exception("no logit output") | |
logprob_t = torch.log_softmax(logit_t, dim=1) | |
logprob_t = torch.log_softmax(logprob_t / temp, dim=1) | |
logprob_t, unaug_logprob_t = add_diversity(seq_table, logprob_t, t, divm, diversity_lambda, bdash) | |
logprob_t = logprob_table[divm].unsqueeze(-1) + logprob_t | |
if local_time == 0: # for the first step, all k seq will have the same probs | |
topk_logprob, topk_words = logprob_t[0].topk( | |
bdash, 0, True, True) | |
else: # unroll and find top logprob, and their unrolled indices | |
topk_logprob, topk_words = logprob_t.view(-1).topk( | |
bdash, 0, True, True) | |
topk_words = topk_words.cpu() | |
logprob_table[divm] = topk_logprob | |
output_i["prev_words_beam"][divm] = topk_words // self.vocab_size # [bdash,] | |
output_i["next_word"][divm] = topk_words % self.vocab_size # [bdash,] | |
if local_time > 0: | |
seq_table[divm] = seq_table[divm][output_i["prev_words_beam"][divm]] | |
seq_table[divm] = torch.cat([ | |
seq_table[divm], | |
output_i["next_word"][divm].unsqueeze(-1)], -1) | |
is_end = seq_table[divm][:, t-divm] == self.end_idx | |
assert seq_table[divm].shape[-1] == t - divm + 1 | |
if t == max_length + divm - 1: | |
is_end.fill_(1) | |
for beam_idx in range(bdash): | |
if is_end[beam_idx]: | |
final_beam = { | |
"seq": seq_table[divm][beam_idx].clone(), | |
"score": logprob_table[divm][beam_idx].item() | |
} | |
final_beam["score"] = final_beam["score"] / (t - divm + 1) | |
done_beams_table[divm].append(final_beam) | |
logprob_table[divm][is_end] -= 1000 | |
self.dbs_process_step(output_i, output_t) | |
done_beams_table = [sorted(done_beams_table[divm], key=lambda x: -x["score"])[:bdash] for divm in range(group_size)] | |
if group_nbest: | |
done_beams = sum(done_beams_table, []) | |
else: | |
done_beams = [group_beam[0] for group_beam in done_beams_table] | |
for _, done_beam in enumerate(done_beams): | |
output["seq"][i, _, :len(done_beam["seq"])] = done_beam["seq"] | |
return output | |
def prepare_dbs_decoder_input(self, input_dict, output_i): | |
raise NotImplementedError | |
def dbs_process_step(self, output_i, output_t): | |
pass | |
class CaptionSequenceModel(nn.Module, CaptionMetaMixin): | |
def __init__(self, model, seq_output_size): | |
super().__init__() | |
self.model = model | |
if model.decoder.d_model != seq_output_size: | |
self.output_transform = nn.Linear(model.decoder.d_model, seq_output_size) | |
else: | |
self.output_transform = lambda x: x | |
def forward(self, input_dict): | |
output = self.model(input_dict) | |
if input_dict["mode"] == "train": | |
lens = input_dict["cap_len"] - 1 | |
# seq_outputs: [N, d_model] | |
elif input_dict["mode"] == "inference": | |
if "sample_method" in input_dict and input_dict["sample_method"] == "beam": | |
return output | |
seq = output["seq"] | |
lens = torch.where(seq == self.model.end_idx, torch.zeros_like(seq), torch.ones_like(seq)).sum(dim=1) | |
else: | |
raise Exception("mode should be either 'train' or 'inference'") | |
seq_output = mean_with_lens(output["embed"], lens) | |
seq_output = self.output_transform(seq_output) | |
output["seq_output"] = seq_output | |
return output | |