Spaces:
Paused
Paused
File size: 16,914 Bytes
69c26b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import PeftAdapterMixin
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.attention_processor import AttentionProcessor
from diffusers.utils import (
USE_PEFT_BACKEND,
is_torch_version,
logging,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.models.controlnet import BaseOutput, zero_module
from diffusers.models.embeddings import (
CombinedTimestepGuidanceTextProjEmbeddings,
CombinedTimestepTextProjEmbeddings,
)
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from transformer_flux import (
EmbedND,
FluxSingleTransformerBlock,
FluxTransformerBlock,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class FluxControlNetOutput(BaseOutput):
controlnet_block_samples: Tuple[torch.Tensor]
controlnet_single_block_samples: Tuple[torch.Tensor]
class FluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
patch_size: int = 1,
in_channels: int = 64,
num_layers: int = 19,
num_single_layers: int = 38,
attention_head_dim: int = 128,
num_attention_heads: int = 24,
joint_attention_dim: int = 4096,
pooled_projection_dim: int = 768,
guidance_embeds: bool = False,
axes_dims_rope: List[int] = [16, 56, 56],
extra_condition_channels: int = 1 * 4,
):
super().__init__()
self.out_channels = in_channels
self.inner_dim = num_attention_heads * attention_head_dim
self.pos_embed = EmbedND(
dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope
)
text_time_guidance_cls = (
CombinedTimestepGuidanceTextProjEmbeddings
if guidance_embeds
else CombinedTimestepTextProjEmbeddings
)
self.time_text_embed = text_time_guidance_cls(
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
)
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
self.x_embedder = nn.Linear(in_channels, self.inner_dim)
self.transformer_blocks = nn.ModuleList(
[
FluxTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
)
for _ in range(num_layers)
]
)
self.single_transformer_blocks = nn.ModuleList(
[
FluxSingleTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
)
for _ in range(num_single_layers)
]
)
# controlnet_blocks
self.controlnet_blocks = nn.ModuleList([])
for _ in range(len(self.transformer_blocks)):
self.controlnet_blocks.append(
zero_module(nn.Linear(self.inner_dim, self.inner_dim))
)
self.controlnet_single_blocks = nn.ModuleList([])
for _ in range(len(self.single_transformer_blocks)):
self.controlnet_single_blocks.append(
zero_module(nn.Linear(self.inner_dim, self.inner_dim))
)
self.controlnet_x_embedder = zero_module(
torch.nn.Linear(in_channels + extra_condition_channels, self.inner_dim)
)
self.gradient_checkpointing = False
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self):
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
@classmethod
def from_transformer(
cls,
transformer,
num_layers: int = 4,
num_single_layers: int = 10,
attention_head_dim: int = 128,
num_attention_heads: int = 24,
load_weights_from_transformer=True,
):
config = transformer.config
config["num_layers"] = num_layers
config["num_single_layers"] = num_single_layers
config["attention_head_dim"] = attention_head_dim
config["num_attention_heads"] = num_attention_heads
controlnet = cls(**config)
if load_weights_from_transformer:
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
controlnet.time_text_embed.load_state_dict(
transformer.time_text_embed.state_dict()
)
controlnet.context_embedder.load_state_dict(
transformer.context_embedder.state_dict()
)
controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict())
controlnet.transformer_blocks.load_state_dict(
transformer.transformer_blocks.state_dict(), strict=False
)
controlnet.single_transformer_blocks.load_state_dict(
transformer.single_transformer_blocks.state_dict(), strict=False
)
controlnet.controlnet_x_embedder = zero_module(
controlnet.controlnet_x_embedder
)
return controlnet
def forward(
self,
hidden_states: torch.Tensor,
controlnet_cond: torch.Tensor,
conditioning_scale: float = 1.0,
encoder_hidden_states: torch.Tensor = None,
pooled_projections: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
txt_ids: torch.Tensor = None,
guidance: torch.Tensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
"""
The [`FluxTransformer2DModel`] forward method.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
Input `hidden_states`.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
from the embeddings of input conditions.
timestep ( `torch.LongTensor`):
Used to indicate denoising step.
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
A list of tensors that if specified are added to the residuals of transformer blocks.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if (
joint_attention_kwargs is not None
and joint_attention_kwargs.get("scale", None) is not None
):
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
hidden_states = self.x_embedder(hidden_states)
# add condition
hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)
timestep = timestep.to(hidden_states.dtype) * 1000
if guidance is not None:
guidance = guidance.to(hidden_states.dtype) * 1000
else:
guidance = None
temb = (
self.time_text_embed(timestep, pooled_projections)
if guidance is None
else self.time_text_embed(timestep, guidance, pooled_projections)
)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
txt_ids = txt_ids.expand(img_ids.size(0), -1, -1)
ids = torch.cat((txt_ids, img_ids), dim=1)
image_rotary_emb = self.pos_embed(ids)
block_samples = ()
for _, block in enumerate(self.transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = (
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
)
(
encoder_hidden_states,
hidden_states,
) = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
temb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
)
block_samples = block_samples + (hidden_states,)
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
single_block_samples = ()
for _, block in enumerate(self.single_transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = (
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
)
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
temb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states=hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
)
single_block_samples = single_block_samples + (
hidden_states[:, encoder_hidden_states.shape[1] :],
)
# controlnet block
controlnet_block_samples = ()
for block_sample, controlnet_block in zip(
block_samples, self.controlnet_blocks
):
block_sample = controlnet_block(block_sample)
controlnet_block_samples = controlnet_block_samples + (block_sample,)
controlnet_single_block_samples = ()
for single_block_sample, controlnet_block in zip(
single_block_samples, self.controlnet_single_blocks
):
single_block_sample = controlnet_block(single_block_sample)
controlnet_single_block_samples = controlnet_single_block_samples + (
single_block_sample,
)
# scaling
controlnet_block_samples = [
sample * conditioning_scale for sample in controlnet_block_samples
]
controlnet_single_block_samples = [
sample * conditioning_scale for sample in controlnet_single_block_samples
]
#
controlnet_block_samples = (
None if len(controlnet_block_samples) == 0 else controlnet_block_samples
)
controlnet_single_block_samples = (
None
if len(controlnet_single_block_samples) == 0
else controlnet_single_block_samples
)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (controlnet_block_samples, controlnet_single_block_samples)
return FluxControlNetOutput(
controlnet_block_samples=controlnet_block_samples,
controlnet_single_block_samples=controlnet_single_block_samples,
)
|