|
import os |
|
import torch as T |
|
import re |
|
from tqdm import tqdm |
|
from datetime import timedelta |
|
|
|
import requests |
|
import hashlib |
|
|
|
from io import BytesIO |
|
from huggingface_hub import hf_hub_download |
|
|
|
def rank0(): |
|
rank = os.environ.get('RANK') |
|
if rank is None or rank == '0': |
|
return True |
|
else: |
|
return False |
|
|
|
def local0(): |
|
local_rank = os.environ.get('LOCAL_RANK') |
|
if local_rank is None or local_rank == '0': |
|
return True |
|
else: |
|
return False |
|
class tqdm0(tqdm): |
|
def __init__(self, *args, **kwargs): |
|
total = kwargs.get('total', None) |
|
if total is None and len(args) > 0: |
|
try: |
|
total = len(args[0]) |
|
except TypeError: |
|
pass |
|
if total is not None: |
|
kwargs['miniters'] = max(1, total // 20) |
|
super().__init__(*args, **kwargs, disable=not rank0(), bar_format='{bar}| {n_fmt}/{total_fmt} [{rate_fmt}{postfix}]') |
|
|
|
def print0(*args, **kwargs): |
|
if rank0(): |
|
print(*args, **kwargs) |
|
|
|
_PRINTED_IDS = set() |
|
|
|
def printonce(*args, id=None, **kwargs): |
|
if id is None: |
|
id = ' '.join(map(str, args)) |
|
|
|
if id not in _PRINTED_IDS: |
|
print(*args, **kwargs) |
|
_PRINTED_IDS.add(id) |
|
|
|
def print0once(*args, **kwargs): |
|
if rank0(): |
|
printonce(*args, **kwargs) |
|
|
|
def init_dist(): |
|
if T.distributed.is_initialized(): |
|
print0('Distributed already initialized') |
|
rank = T.distributed.get_rank() |
|
local_rank = int(os.environ.get('LOCAL_RANK', 0)) |
|
world_size = T.distributed.get_world_size() |
|
else: |
|
try: |
|
rank = int(os.environ['RANK']) |
|
local_rank = int(os.environ['LOCAL_RANK']) |
|
world_size = int(os.environ['WORLD_SIZE']) |
|
device = f'cuda:{local_rank}' |
|
T.cuda.set_device(device) |
|
T.distributed.init_process_group(backend='nccl', timeout=timedelta(minutes=30), rank=rank, world_size=world_size, device_id=T.device(device)) |
|
print(f'Rank {rank} of {world_size}.') |
|
except Exception as e: |
|
print0once(f'Not initializing distributed env: {e}') |
|
rank = 0 |
|
local_rank = 0 |
|
world_size = 1 |
|
return rank, local_rank, world_size |
|
|
|
def load_ckpt(load_from_location, expected_hash=None): |
|
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '1' |
|
if local0(): |
|
repo_id = "si-pbc/hertz-dev" |
|
print0(f'Loading checkpoint from repo_id {repo_id} and filename {load_from_location}.pt. This may take a while...') |
|
save_path = hf_hub_download(repo_id=repo_id, filename=f"{load_from_location}.pt") |
|
print0(f'Downloaded checkpoint to {save_path}') |
|
if expected_hash is not None: |
|
with open(save_path, 'rb') as f: |
|
file_hash = hashlib.md5(f.read()).hexdigest() |
|
if file_hash != expected_hash: |
|
print(f'Hash mismatch for {save_path}. Expected {expected_hash} but got {file_hash}. Deleting checkpoint and trying again.') |
|
os.remove(save_path) |
|
return load_ckpt(load_from_location, expected_hash) |
|
if T.distributed.is_initialized(): |
|
save_path = [save_path] |
|
T.distributed.broadcast_object_list(save_path, src=0) |
|
save_path = save_path[0] |
|
loaded = T.load(save_path, weights_only=False, map_location='cpu') |
|
print0(f'Loaded checkpoint from {save_path}') |
|
return loaded |