Create demo.
Browse files
app.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from janus.models import MultiModalityCausalLM, VLChatProcessor
|
3 |
+
from janus.utils.io import load_pil_images
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import AutoModelForCausalLM
|
7 |
+
import torch
|
8 |
+
|
9 |
+
##
|
10 |
+
# Code from deepseek-ai/Janus
|
11 |
+
# Space from huggingface/twodgirl.
|
12 |
+
|
13 |
+
def generate(input_ids,
|
14 |
+
width,
|
15 |
+
height,
|
16 |
+
temperature: float = 1,
|
17 |
+
parallel_size: int = 1,
|
18 |
+
cfg_weight: float = 5,
|
19 |
+
image_token_num_per_image: int = 576,
|
20 |
+
patch_size: int = 16):
|
21 |
+
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int) #.cuda()
|
22 |
+
for i in range(parallel_size * 2):
|
23 |
+
tokens[i, :] = input_ids
|
24 |
+
if i % 2 != 0:
|
25 |
+
tokens[i, 1:-1] = processor.pad_id
|
26 |
+
inputs_embeds = model.language_model.get_input_embeddings()(tokens)
|
27 |
+
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int) #.cuda()
|
28 |
+
|
29 |
+
pkv = None
|
30 |
+
for i in range(image_token_num_per_image):
|
31 |
+
outputs = model.language_model.model(inputs_embeds=inputs_embeds,
|
32 |
+
use_cache=True,
|
33 |
+
past_key_values=pkv)
|
34 |
+
pkv = outputs.past_key_values
|
35 |
+
hidden_states = outputs.last_hidden_state
|
36 |
+
logits = model.gen_head(hidden_states[:, -1, :])
|
37 |
+
logit_cond = logits[0::2, :]
|
38 |
+
logit_uncond = logits[1::2, :]
|
39 |
+
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
|
40 |
+
probs = torch.softmax(logits / temperature, dim=-1)
|
41 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
42 |
+
generated_tokens[:, i] = next_token.squeeze(dim=-1)
|
43 |
+
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
|
44 |
+
img_embeds = model.prepare_gen_img_embeds(next_token)
|
45 |
+
inputs_embeds = img_embeds.unsqueeze(dim=1)
|
46 |
+
patches = model.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
|
47 |
+
shape=[parallel_size, 8, width // patch_size, height // patch_size])
|
48 |
+
|
49 |
+
return generated_tokens.to(dtype=torch.int), patches
|
50 |
+
|
51 |
+
def unpack(dec, width, height, parallel_size=1):
|
52 |
+
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
|
53 |
+
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
|
54 |
+
|
55 |
+
visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
|
56 |
+
visual_img[:, :, :] = dec
|
57 |
+
|
58 |
+
return visual_img
|
59 |
+
|
60 |
+
@torch.inference_mode()
|
61 |
+
def generate_image(prompt,
|
62 |
+
width,
|
63 |
+
height,
|
64 |
+
# num_steps,
|
65 |
+
guidance,
|
66 |
+
seed):
|
67 |
+
if seed > -1:
|
68 |
+
generator = torch.Generator('cpu').manual_seed(seed)
|
69 |
+
else:
|
70 |
+
generator = None
|
71 |
+
messages = [{'role': 'User', 'content': prompt},
|
72 |
+
{'role': 'Assistant', 'content': ''}]
|
73 |
+
text = processor.apply_sft_template_for_multi_turn_prompts(conversations=messages,
|
74 |
+
sft_format=processor.sft_format,
|
75 |
+
system_prompt='')
|
76 |
+
text = text + processor.image_start_tag
|
77 |
+
input_ids = torch.LongTensor(processor.tokenizer.encode(prompt))
|
78 |
+
output, patches = generate(input_ids,
|
79 |
+
width // 16 * 16,
|
80 |
+
height // 16 * 16,
|
81 |
+
cfg_weight=guidance)
|
82 |
+
images = unpack(patches,
|
83 |
+
width // 16 * 16,
|
84 |
+
height // 16 * 16)
|
85 |
+
|
86 |
+
return Image.fromarray(images[0]), seed, ''
|
87 |
+
|
88 |
+
with gr.Blocks() as demo:
|
89 |
+
with gr.Row():
|
90 |
+
with gr.Column():
|
91 |
+
prompt = gr.Textbox(label='Prompt', value='portrait, color, cinematic')
|
92 |
+
width = gr.Slider(256, 1536, 896, step=16, label='Width')
|
93 |
+
height = gr.Slider(256, 1536, 1152, step=16, label='Height')
|
94 |
+
guidance = gr.Slider(1.0, 10.0, 5, step=0.1, label='Guidance')
|
95 |
+
seed = gr.Number(-1, precision=0, label='Seed (-1 for random)')
|
96 |
+
|
97 |
+
generate_btn = gr.Button('Generate')
|
98 |
+
|
99 |
+
with gr.Column():
|
100 |
+
output_image = gr.Image(label='Generated Image')
|
101 |
+
seed_output = gr.Textbox(label='Used Seed')
|
102 |
+
intermediate_output = gr.Gallery(label='Output', elem_id='gallery', visible=False)
|
103 |
+
|
104 |
+
prompt.submit(
|
105 |
+
fn=generate_image,
|
106 |
+
inputs=[width, height, guidance, seed, prompt],
|
107 |
+
outputs=[output_image, seed_output, intermediate_output],
|
108 |
+
)
|
109 |
+
generate_btn.click(
|
110 |
+
fn=generate_image,
|
111 |
+
inputs=[width, height, guidance, seed, prompt],
|
112 |
+
outputs=[output_image, seed_output, intermediate_output],
|
113 |
+
)
|
114 |
+
|
115 |
+
if __name__ == '__main__':
|
116 |
+
model_path = 'deepseek-ai/Janus-1.3B'
|
117 |
+
processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
|
118 |
+
tokenizer = processor.tokenizer
|
119 |
+
model: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
|
120 |
+
model = model.to(torch.bfloat16) #.cuda()
|
121 |
+
demo.launch()
|