Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from datasets import load_dataset | |
from ast import literal_eval | |
import altair as alt | |
import plotly.graph_objs as go | |
import matplotlib.pyplot as plt | |
def main(): | |
print("Build") | |
nlp_tasks = ["text-classification", "text-generation", "text2text-generation", "token-classification", "fill-mask", "question-answering", | |
"translation", "conversational", "sentence-similarity", "summarization", "multiple-choice", "zero-shot-classification", "table-question-answering" | |
] | |
audio_tasks = ["automatic-speech-recognition", "audio-classification", "text-to-speech", "audio-to-audio", "voice-activity-detection"] | |
cv_tasks = ["image-classification", "image-segmentation", "zero-shot-image-classification", "image-to-image", "unconditional-image-generation", "object-detection"] | |
multimodal = ["feature-extraction", "text-to-image", "visual-question-answering", "image-to-text", "document-question-answering"] | |
tabular = ["tabular-classification", "tabular-regression"] | |
modalities = { | |
"nlp": nlp_tasks, | |
"audio": audio_tasks, | |
"cv": cv_tasks, | |
"multimodal": multimodal, | |
"tabular": tabular, | |
"rl": ["reinforcement-learning"] | |
} | |
def modality(row): | |
pipeline = row["pipeline"] | |
for modality, tasks in modalities.items(): | |
if pipeline in tasks: | |
return modality | |
if type(pipeline) == "str": | |
return "unk_modality" | |
return None | |
supported_revisions = ["03_10_22", "27_09_22"] | |
st.cache(allow_output_mutation=True) | |
def process_dataset(version): | |
# Load dataset at specified revision | |
dataset = load_dataset("open-source-metrics/model-repos-stats", revision=version) | |
# Convert to pandas dataframe | |
data = dataset["train"].to_pandas() | |
# Add modality column | |
data["modality"] = data.apply(modality, axis=1) | |
# Bin the model card length into some bins | |
data["length_bins"] = pd.cut(data["text_length"], [0, 200, 1000, 2000, 3000, 4000, 5000, 7500, 10000, 20000, 50000]) | |
return data | |
col1, col2 = st.columns(2) | |
with col1: | |
base = st.selectbox( | |
'Old revision', | |
supported_revisions, | |
index=1) | |
with col2: | |
new = st.selectbox( | |
'Last revision', | |
supported_revisions, | |
index=0) | |
old_data = process_dataset(base) | |
data = process_dataset(new) | |
def eval_tags(row): | |
tags = row["tags"] | |
if tags == "none" or tags == [] or tags == "{}": | |
return [] | |
if tags[0] != "[": | |
tags = str([tags]) | |
val = literal_eval(tags) | |
if isinstance(val, dict): | |
return [] | |
return val | |
old_data["tags"] = old_data.apply(eval_tags, axis=1) | |
data["tags"] = data.apply(eval_tags, axis=1) | |
total_samples_old = old_data.shape[0] | |
total_samples = data.shape[0] | |
st.metric(label="Total models", value=total_samples, delta=total_samples-total_samples_old) | |
# Tabs don't work in Spaces st version | |
#tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8 = st.tabs(["Language", "License", "Pipeline", "Discussion Features", "Libraries", "Model Cards", "Super users", "Raw Data"]) | |
tab = st.selectbox( | |
'Topic of interest', | |
["Language", "License", "Pipeline", "Discussion Features", "Libraries", "Model Cards", "Super Users", "Raw Data"]) | |
# with tab1: | |
if tab == "Language": | |
st.header("Languages info") | |
data.loc[data.languages == "False", 'languages'] = None | |
data.loc[data.languages == {}, 'languages'] = None | |
old_data.loc[old_data.languages == "False", 'languages'] = None | |
old_data.loc[old_data.languages == {}, 'languages'] = None | |
no_lang_count = data["languages"].isna().sum() | |
no_lang_count_old = old_data["languages"].isna().sum() | |
data["languages"] = data["languages"].fillna('none') | |
old_data["languages"] = old_data["languages"].fillna('none') | |
def make_list(row): | |
languages = row["languages"] | |
if languages == "none": | |
return [] | |
return literal_eval(languages) | |
def language_count(row): | |
languages = row["languages"] | |
leng = len(languages) | |
return leng | |
data["languages"] = data.apply(make_list, axis=1) | |
data["language_count"] = data.apply(language_count, axis=1) | |
old_data["languages"] = old_data.apply(make_list, axis=1) | |
old_data["language_count"] = old_data.apply(language_count, axis=1) | |
models_with_langs = data[data["language_count"] > 0] | |
langs = models_with_langs["languages"].explode() | |
langs = langs[langs != {}] | |
total_langs = len(langs.unique()) | |
models_with_langs_old = old_data[old_data["language_count"] > 0] | |
langs_old = models_with_langs_old["languages"].explode() | |
langs_old = langs_old[langs_old != {}] | |
total_langs_old = len(langs_old.unique()) | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
v = total_samples-no_lang_count | |
v_old = total_samples_old-no_lang_count_old | |
st.metric(label="Language Specified", value=v, delta=int(v-v_old)) | |
with col2: | |
st.metric(label="No Language Specified", value=no_lang_count, delta=int(no_lang_count-no_lang_count_old)) | |
with col3: | |
st.metric(label="Total Unique Languages", value=total_langs, delta=int(total_langs-total_langs_old)) | |
st.subheader("Count of languages per model repo") | |
st.text("Some repos are for multiple languages, so the count is greater than 1") | |
linguality = st.selectbox( | |
'All or just Multilingual', | |
["All", "Just Multilingual", "Three or more languages"]) | |
filter = 0 | |
st.text("Tofix: This just takes into account count of languages, it misses the multilingual tag") | |
if linguality == "Just Multilingual": | |
filter = 1 | |
elif linguality == "Three or more languages": | |
filter = 2 | |
models_with_langs = data[data["language_count"] > filter] | |
df1 = models_with_langs['language_count'].value_counts() | |
models_with_langs_old = old_data[old_data["language_count"] > filter] | |
df1_old = models_with_langs_old['language_count'].value_counts() | |
st.bar_chart(df1) | |
st.subheader("Most frequent languages") | |
linguality_2 = st.selectbox( | |
'All or filtered', | |
["All", "No English", "Remove top 10"]) | |
filter = 0 | |
if linguality_2 == "All": | |
filter = 0 | |
elif linguality_2 == "No English": | |
filter = 1 | |
else: | |
filter = 2 | |
models_with_langs = data[data["language_count"] > 0] | |
langs = models_with_langs["languages"].explode() | |
langs = langs[langs != {}] | |
orig_d = langs.value_counts().rename_axis("language").to_frame('counts').reset_index() | |
d = orig_d | |
models_with_langs_old = old_data[old_data["language_count"] > 0] | |
langs = models_with_langs_old["languages"].explode() | |
langs = langs[langs != {}] | |
orig_d_old = langs.value_counts().rename_axis("language").to_frame('counts').reset_index() | |
if filter == 1: | |
d = orig_d.iloc[1:] | |
elif filter == 2: | |
d = orig_d.iloc[10:] | |
# Just keep top 25 to avoid vertical scroll | |
d = d.iloc[:25] | |
st.write(alt.Chart(d).mark_bar().encode( | |
x='counts', | |
y=alt.X('language', sort=None) | |
)) | |
st.subheader("Raw Data") | |
l = df1.rename_axis("lang_count").reset_index().rename(columns={"language_count": "r_c"}) | |
l_old = df1_old.rename_axis("lang_count").reset_index().rename(columns={"language_count": "old_r_c"}) | |
final_data = pd.merge( | |
l, l_old, how="outer", on="lang_count" | |
) | |
final_data["diff"] = final_data["r_c"] - final_data["old_r_c"] | |
st.dataframe(final_data) | |
d = orig_d.astype(str) | |
orig_d_old = orig_d_old.astype(str).rename(columns={"counts": "old_c"}) | |
final_data = pd.merge( | |
d, orig_d_old, how="outer", on="language" | |
) | |
final_data["diff"] = final_data["counts"].astype(int) - final_data["old_c"].astype(int) | |
st.dataframe(final_data) | |
#with tab2: | |
if tab == "License": | |
st.header("License info") | |
no_license_count = data["license"].isna().sum() | |
no_license_count_old = old_data["license"].isna().sum() | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
v = total_samples-no_license_count | |
v_old = total_samples_old-no_license_count_old | |
st.metric(label="License Specified", value=v, delta=int(v-v_old)) | |
with col2: | |
st.metric(label="No license Specified", value=no_license_count, delta=int(no_license_count-no_license_count_old)) | |
with col3: | |
unique_licenses = len(data["license"].unique()) | |
unique_licenses_old = len(old_data["license"].unique()) | |
st.metric(label="Total Unique Licenses", value=unique_licenses, delta=int(unique_licenses-unique_licenses_old)) | |
st.subheader("Distribution of licenses per model repo") | |
license_filter = st.selectbox( | |
'All or filtered', | |
["All", "No Apache 2.0", "Remove top 10"]) | |
filter = 0 | |
if license_filter == "All": | |
filter = 0 | |
elif license_filter == "No Apache 2.0": | |
filter = 1 | |
else: | |
filter = 2 | |
d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index() | |
if filter == 1: | |
d = d.iloc[1:] | |
elif filter == 2: | |
d = d.iloc[10:] | |
# Just keep top 25 to avoid vertical scroll | |
d = d.iloc[:25] | |
st.write(alt.Chart(d).mark_bar().encode( | |
x='counts', | |
y=alt.X('license', sort=None) | |
)) | |
st.text("There are some edge cases, as old repos using lists of licenses.") | |
st.subheader("Raw Data") | |
d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index() | |
d_old = old_data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index().rename(columns={"counts": "old_c"}) | |
final_data = pd.merge( | |
d, d_old, how="outer", on="license" | |
) | |
final_data["diff"] = final_data["counts"] - final_data["old_c"] | |
st.dataframe(final_data) | |
#with tab3: | |
if tab == "Pipeline": | |
st.header("Pipeline info") | |
tags = data["tags"].explode() | |
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index() | |
s = tags["tag"] | |
s = s[s.apply(type) == str] | |
unique_tags = len(s.unique()) | |
tags_old = old_data["tags"].explode() | |
tags_old = tags_old[tags_old.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index() | |
s = tags_old["tag"] | |
s = s[s.apply(type) == str] | |
unique_tags_old = len(s.unique()) | |
no_pipeline_count = data["pipeline"].isna().sum() | |
no_pipeline_count_old = old_data["pipeline"].isna().sum() | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
v = total_samples-no_pipeline_count | |
v_old = total_samples_old-no_pipeline_count_old | |
st.metric(label="# models that have any pipeline", value=v, delta=int(v-v_old)) | |
with col2: | |
st.metric(label="No pipeline Specified", value=no_pipeline_count, delta=int(no_pipeline_count-no_pipeline_count_old)) | |
with col3: | |
st.metric(label="Total Unique Tags", value=unique_tags, delta=int(unique_tags-unique_tags_old)) | |
pipeline_filter = st.selectbox( | |
'Modalities', | |
["All", "NLP", "CV", "Audio", "RL", "Multimodal", "Tabular"]) | |
filter = 0 | |
if pipeline_filter == "All": | |
filter = 0 | |
elif pipeline_filter == "NLP": | |
filter = 1 | |
elif pipeline_filter == "CV": | |
filter = 2 | |
elif pipeline_filter == "Audio": | |
filter = 3 | |
elif pipeline_filter == "RL": | |
filter = 4 | |
elif pipeline_filter == "Multimodal": | |
filter = 5 | |
elif pipeline_filter == "Tabular": | |
filter = 6 | |
st.subheader("High-level metrics") | |
filtered_data = data[data['pipeline'].notna()] | |
filtered_data_old = old_data[old_data['pipeline'].notna()] | |
if filter == 1: | |
filtered_data = data[data["modality"] == "nlp"] | |
filtered_data_old = old_data[old_data["modality"] == "nlp"] | |
elif filter == 2: | |
filtered_data = data[data["modality"] == "cv"] | |
filtered_data_old = old_data[old_data["modality"] == "cv"] | |
elif filter == 3: | |
filtered_data = data[data["modality"] == "audio"] | |
filtered_data_old = old_data[old_data["modality"] == "audio"] | |
elif filter == 4: | |
filtered_data = data[data["modality"] == "rl"] | |
filtered_data_old = old_data[old_data["modality"] == "rl"] | |
elif filter == 5: | |
filtered_data = data[data["modality"] == "multimodal"] | |
filtered_data_old = old_data[old_data["modality"] == "multimodal"] | |
elif filter == 6: | |
filtered_data = data[data["modality"] == "tabular"] | |
filtered_data_old = old_data[old_data["modality"] == "tabular"] | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
p = st.selectbox( | |
'What pipeline do you want to see?', | |
["all", *filtered_data["pipeline"].unique()] | |
) | |
with col2: | |
l = st.selectbox( | |
'What library do you want to see?', | |
["all", "not transformers", *filtered_data["library"].unique()] | |
) | |
with col3: | |
f = st.selectbox( | |
'What framework support? (transformers)', | |
["all", "py", "tf", "jax"] | |
) | |
col1, col2 = st.columns(2) | |
with col1: | |
filt = st.multiselect( | |
label="Tags (All by default)", | |
options=s.unique(), | |
default=None) | |
with col2: | |
o = st.selectbox( | |
label="Operation (for tags)", | |
options=["Any", "All", "None"] | |
) | |
def filter_fn(row): | |
tags = row["tags"] | |
tags[:] = [d for d in tags if isinstance(d, str)] | |
if o == "All": | |
if all(elem in tags for elem in filt): | |
return True | |
s1 = set(tags) | |
s2 = set(filt) | |
if o == "Any": | |
if bool(s1 & s2): | |
return True | |
if o == "None": | |
if len(s1.intersection(s2)) == 0: | |
return True | |
return False | |
if p != "all": | |
filtered_data = filtered_data[filtered_data["pipeline"] == p] | |
filtered_data_old = filtered_data_old[filtered_data_old["pipeline"] == p] | |
if l != "all" and l != "not transformers": | |
filtered_data = filtered_data[filtered_data["library"] == l] | |
filtered_data_old = filtered_data_old[filtered_data_old["library"] == l] | |
if l == "not transformers": | |
filtered_data = filtered_data[filtered_data["library"] != "transformers"] | |
filtered_data_old = filtered_data_old[filtered_data_old["library"] != "transformers"] | |
if f != "all": | |
if f == "py": | |
filtered_data = filtered_data[filtered_data["pytorch"] == 1] | |
filtered_data_old = filtered_data_old[filtered_data_old["pytorch"] == 1] | |
elif f == "tf": | |
filtered_data = filtered_data[filtered_data["tensorflow"] == 1] | |
filtered_data_old = filtered_data_old[filtered_data_old["tensorflow"] == 1] | |
elif f == "jax": | |
filtered_data = filtered_data[filtered_data["jax"] == 1] | |
filtered_data_old = filtered_data_old[filtered_data_old["jax"] == 1] | |
if filt != []: | |
filtered_data = filtered_data[filtered_data.apply(filter_fn, axis=1)] | |
filtered_data_old = filtered_data_old[filtered_data_old.apply(filter_fn, axis=1)] | |
d = filtered_data["pipeline"].value_counts().rename_axis("pipeline").to_frame('counts').reset_index() | |
columns_of_interest = ["downloads_30d", "likes", "pytorch", "tensorflow", "jax"] | |
grouped_data = filtered_data.groupby("pipeline").sum()[columns_of_interest] | |
final_data = pd.merge( | |
d, grouped_data, how="outer", on="pipeline" | |
) | |
sums = grouped_data.sum() | |
d_old = filtered_data_old["pipeline"].value_counts().rename_axis("pipeline").to_frame('counts').reset_index() | |
grouped_data_old = filtered_data_old.groupby("pipeline").sum()[columns_of_interest] | |
final_data_old = pd.merge( | |
d_old, grouped_data_old, how="outer", on="pipeline" | |
) | |
sums = grouped_data.sum() | |
sums_old = grouped_data_old.sum() | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
st.metric(label="Total models", value=filtered_data.shape[0], delta=int(filtered_data.shape[0] - filtered_data_old.shape[0])) | |
with col2: | |
st.metric(label="Cumulative Downloads (30d)", value=sums["downloads_30d"], delta=int(sums["downloads_30d"] - sums_old["downloads_30d"])) | |
with col3: | |
st.metric(label="Cumulative likes", value=sums["likes"], delta=int(sums["likes"] - sums_old["likes"])) | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
st.metric(label="Total in PT", value=sums["pytorch"], delta=int(sums["pytorch"] - sums_old["pytorch"])) | |
with col2: | |
st.metric(label="Total in TF", value=sums["tensorflow"], delta=int(sums["tensorflow"] - sums_old["tensorflow"])) | |
with col3: | |
st.metric(label="Total in JAX", value=sums["jax"], delta=int(sums["jax"] - sums_old["jax"])) | |
st.metric(label="Unique Tags", value=unique_tags, delta=int(unique_tags - unique_tags_old)) | |
st.subheader("Count of models per pipeline") | |
st.write(alt.Chart(d).mark_bar().encode( | |
x='counts', | |
y=alt.X('pipeline', sort=None) | |
)) | |
st.subheader("Aggregated data") | |
st.dataframe(final_data) | |
st.subheader("Most common model types (specific to transformers)") | |
d = filtered_data["model_type"].value_counts().rename_axis("model_type").to_frame('counts').reset_index() | |
d = d.iloc[:15] | |
st.write(alt.Chart(d).mark_bar().encode( | |
x='counts', | |
y=alt.X('model_type', sort=None) | |
)) | |
st.subheader("Most common library types (Learn more in library tab)") | |
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index().head(15) | |
st.write(alt.Chart(d).mark_bar().encode( | |
x='counts', | |
y=alt.X('library', sort=None) | |
)) | |
st.subheader("Tags by count") | |
tags = filtered_data["tags"].explode() | |
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index() | |
st.write(alt.Chart(tags.head(30)).mark_bar().encode( | |
x='counts', | |
y=alt.X('tag', sort=None) | |
)) | |
st.subheader("Raw Data") | |
columns_of_interest = [ | |
"repo_id", "author", "model_type", "files_per_repo", "library", | |
"downloads_30d", "likes", "pytorch", "tensorflow", "jax"] | |
raw_data = filtered_data[columns_of_interest] | |
st.dataframe(raw_data) | |
# todo : add activity metric | |
#with tab4: | |
if tab == "Discussion Features": | |
st.header("Discussions Tab info") | |
columns_of_interest = ["prs_count", "prs_open", "prs_merged", "prs_closed", "discussions_count", "discussions_open", "discussions_closed"] | |
sums = data[columns_of_interest].sum() | |
sums_old = old_data[columns_of_interest].sum() | |
col1, col2, col3, col4 = st.columns(4) | |
with col1: | |
st.metric(label="Total PRs", value=sums["prs_count"],delta=int(sums["prs_count"] - sums_old["prs_count"])) | |
with col2: | |
st.metric(label="PRs opened", value=sums["prs_open"], delta=int(sums["prs_open"] - sums_old["prs_open"])) | |
with col3: | |
st.metric(label="PRs merged", value=sums["prs_merged"], delta=int(sums["prs_merged"] - sums_old["prs_merged"])) | |
with col4: | |
st.metric(label="PRs closed", value=sums["prs_closed"], delta=int(sums["prs_closed"] - sums_old["prs_closed"])) | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
st.metric(label="Total discussions", value=sums["discussions_count"], delta=int(sums["discussions_count"] - sums_old["discussions_count"])) | |
with col2: | |
st.metric(label="Discussions open", value=sums["discussions_open"], delta=int(sums["discussions_open"] - sums_old["discussions_open"])) | |
with col3: | |
st.metric(label="Discussions closed", value=sums["discussions_closed"], delta=int(sums["discussions_closed"] - sums_old["discussions_closed"])) | |
filtered_data = data[["repo_id", "prs_count", "prs_open", "prs_merged", "prs_closed", "discussions_count", "discussions_open", "discussions_closed"]].sort_values("prs_count", ascending=False).reset_index(drop=True) | |
st.dataframe(filtered_data) | |
#with tab5: | |
if tab == "Libraries": | |
st.header("Library info") | |
no_library_count = data["library"].isna().sum() | |
no_library_count_old = old_data["library"].isna().sum() | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
v = total_samples-no_library_count | |
v_old = total_samples_old-no_library_count_old | |
st.metric(label="# models that have any library", value=v, delta=int(v-v_old)) | |
with col2: | |
st.metric(label="No library Specified", value=no_library_count, delta=int(no_library_count-no_library_count_old)) | |
with col3: | |
v = len(data["library"].unique()) | |
v_old = len(old_data["library"].unique()) | |
st.metric(label="Total Unique library", value=v, delta=int(v-v_old)) | |
st.subheader("High-level metrics") | |
filtered_data = data[data['library'].notna()] | |
filtered_data_old = old_data[old_data['library'].notna()] | |
col1, col2 = st.columns(2) | |
with col1: | |
lib = st.selectbox( | |
'What library do you want to see? ', | |
["all", "not transformers", *filtered_data["library"].unique()] | |
) | |
with col2: | |
pip = st.selectbox( | |
'What pipeline do you want to see? ', | |
["all", *filtered_data["pipeline"].unique()] | |
) | |
if pip != "all" : | |
filtered_data = filtered_data[filtered_data["pipeline"] == pip] | |
filtered_data_old = filtered_data_old[filtered_data_old["pipeline"] == pip] | |
if lib != "all" and lib != "not transformers": | |
filtered_data = filtered_data[filtered_data["library"] == lib] | |
filtered_data_old = filtered_data_old[filtered_data_old["library"] == lib] | |
if lib == "not transformers": | |
filtered_data = filtered_data[filtered_data["library"] != "transformers"] | |
filtered_data_old = filtered_data_old[filtered_data_old["library"] != "transformers"] | |
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index() | |
grouped_data = filtered_data.groupby("library").sum()[["downloads_30d", "likes"]] | |
final_data = pd.merge( | |
d, grouped_data, how="outer", on="library" | |
) | |
sums = grouped_data.sum() | |
d_old = filtered_data_old["library"].value_counts().rename_axis("library").to_frame('counts').reset_index() | |
grouped_data_old = filtered_data_old.groupby("library").sum()[["downloads_30d", "likes"]] | |
final_data_old = pd.merge( | |
d_old, grouped_data_old, how="outer", on="library" | |
).add_suffix('_old') | |
final_data_old = final_data_old.rename(index=str, columns={"library_old": "library"}) | |
sums_old = grouped_data_old.sum() | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
v = filtered_data.shape[0] | |
v_old = filtered_data_old.shape[0] | |
st.metric(label="Total models", value=v, delta=int(v-v_old)) | |
with col2: | |
st.metric(label="Cumulative Downloads (30d)", value=sums["downloads_30d"], delta=int(sums["downloads_30d"]-sums_old["downloads_30d"])) | |
with col3: | |
st.metric(label="Cumulative likes", value=sums["likes"], delta=int(sums["likes"]-sums_old["likes"])) | |
st.subheader("Most common library types (Learn more in library tab)") | |
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index().head(15) | |
st.write(alt.Chart(d).mark_bar().encode( | |
x='counts', | |
y=alt.X('library', sort=None) | |
)) | |
st.subheader("Aggregated Data") | |
final_data = pd.merge( | |
final_data, final_data_old, how="outer", on="library" | |
) | |
final_data["counts_diff"] = final_data["counts"] - final_data["counts_old"] | |
final_data["downloads_diff"] = final_data["downloads_30d"] - final_data["downloads_30d_old"] | |
final_data["likes_diff"] = final_data["likes"] - final_data["likes_old"] | |
st.dataframe(final_data) | |
st.subheader("Raw Data") | |
columns_of_interest = ["repo_id", "author", "files_per_repo", "library", "downloads_30d", "likes"] | |
filtered_data = filtered_data[columns_of_interest] | |
st.dataframe(filtered_data) | |
#with tab6: | |
if tab == "Model Cards": | |
st.header("Model cards") | |
columns_of_interest = ["has_model_index", "has_metadata", "has_text", "text_length"] | |
rows = data.shape[0] | |
rows_old = old_data.shape[0] | |
cond = data["has_model_index"] | data["has_text"] | |
with_model_card = data[cond] | |
c_model_card = with_model_card.shape[0] | |
cond = old_data["has_model_index"] | old_data["has_text"] | |
with_model_card_old = old_data[cond] | |
c_model_card_old = with_model_card_old.shape[0] | |
st.subheader("High-level metrics") | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
st.metric(label="# models with model card file", value=c_model_card, delta=int(c_model_card-c_model_card_old)) | |
with col2: | |
st.metric(label="# models without model card file", value=rows-c_model_card, delta=int((rows-c_model_card)-(rows_old-c_model_card_old))) | |
with_index = data["has_model_index"].sum() | |
with_index_old = old_data["has_model_index"].sum() | |
with col1: | |
st.metric(label="# models with model index", value=with_index, delta=int(with_index-with_index_old)) | |
with col2: | |
st.metric(label="# models without model index", value=rows-with_index, delta=int((rows-with_index)-(rows_old-with_index_old))) | |
with_text = data["has_text"] | |
with_text_old = old_data["has_text"] | |
with col1: | |
st.metric(label="# models with model card text", value=with_text.sum(), delta=int(with_text.sum()-with_text_old.sum())) | |
with col2: | |
st.metric(label="# models without model card text", value=rows-with_text.sum(), delta=int((rows-with_text.sum())-(rows_old-with_text_old.sum()))) | |
st.subheader("Length (chars) of model card content") | |
fig, ax = plt.subplots() | |
ax = data["length_bins"].value_counts().plot.bar() | |
st.metric(label="# average length of model card (chars)", value=data[with_text]["text_length"].mean()) | |
st.pyplot(fig) | |
st.subheader("Tags (Read more in Pipeline tab)") | |
tags = data["tags"].explode() | |
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index() | |
st.write(alt.Chart(tags.head(30)).mark_bar().encode( | |
x='counts', | |
y=alt.X('tag', sort=None) | |
)) | |
#with tab7: | |
if tab == "Super Users": | |
st.header("Authors") | |
st.text("This info corresponds to the repos owned by the authors") | |
authors = data.groupby("author").sum().drop(["text_length", "Unnamed: 0"], axis=1).sort_values("downloads_30d", ascending=False) | |
d = data["author"].value_counts().rename_axis("author").to_frame('counts').reset_index() | |
final_data = pd.merge( | |
d, authors, how="outer", on="author" | |
) | |
st.dataframe(final_data) | |
#with tab2: | |
if tab == "Raw Data": | |
st.header("Raw Data") | |
d = data.astype(str) | |
st.dataframe(d) | |
if __name__ == '__main__': | |
main() | |