import time
import gradio as gr
from os import getenv
from openai import OpenAI
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=getenv("OPENROUTER_API_KEY"),
)
css = """
body.show-thoughts .thought {
display: block !important;
}
.thought {
opacity: 0.8;
font-family: "Courier New", monospace;
border: 1px gray solid;
padding: 10px;
border-radius: 5px;
display: none;
}
.thought-prompt {
opacity: 0.8;
font-family: "Courier New", monospace;
}
"""
with open("contemplator.txt", "r") as f:
system_msg = f.read()
def make_thinking_prompt(time):
i = int(time * 4) % 40
if i > 20:
i = 40 - i
return "๐ค [" + "." * i + "Thinking" + "." * (20 - i) + "]"
def streaming(message, history, system_msg, model):
messages = [
{
"role": "system",
"content": system_msg
}
]
for user, assistant in history:
messages.append({
"role": "user",
"content": user
})
messages.append({
"role": "assistant",
"content": assistant
})
messages.append({
"role": "user",
"content": message
})
thinking_prompt = "
" + "๐คจ Understanding..." + "
"
yield thinking_prompt
completion = client.chat.completions.create(
model=model,
messages=messages,
max_completion_tokens=8000,
temperature=0.0,
stream=True,
)
reply = ""
start_time = time.time()
try:
for i, chunk in enumerate(completion):
reply += chunk.choices[0].delta.content
answer = ""
if not "" in reply:
thought_text = f'{reply.replace("", "").strip()}
'
thinking_prompt = "" + make_thinking_prompt(time.time() - start_time) + "
"
else:
thought_text = f'{reply.replace("", "").split("")[0].strip()}
'
answer = reply.split("")[1].replace("", "").replace("", "").strip()
thinking_prompt = f"โ Thought for {time.time() - start_time:.2f} seconds
"
yield thinking_prompt + thought_text + "
" + answer
yield thinking_prompt + thought_text + "
" + answer
except Exception as e:
print(e)
yield f"An error occurred. {e}"
markdown = """
## ๐ซ Overthink 1(o1)
Insprired by how o1 works, this LLM is instructed to generate very long and detailed chain-of-thoughts. It will think extra hard before providing an answer.
Actually this does help with reasoning, compared to normal step-by-step reasoning. I wrote a blog post about this [here](https://huggingface.co/blog/wenbopan/recreating-o1).
Sometimes this LLM overthinks for super simple questions, but it's fun to watch. Hope you enjoy it!
### System Message
This is done by instructing the model with a large system message, which you can check on the top tab.
"""
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, fill_height=True) as demo:
with gr.Row(equal_height=True):
with gr.Column(scale=1, min_width=300):
with gr.Tab("Settings"):
gr.Markdown(markdown)
model = gr.Dropdown(["nousresearch/hermes-3-llama-3.1-405b:free", "nousresearch/hermes-3-llama-3.1-70b", "meta-llama/llama-3.1-405b-instruct", "google/gemini-pro-1.5-exp", "meta-llama/llama-3.1-8b-instruct:free"], value="nousresearch/hermes-3-llama-3.1-405b:free", label="Model")
show_thoughts = gr.Checkbox(False, label="Show Thoughts", interactive=True, elem_id="show_thoughts")
show_thoughts.change(None, js="""function run(){ checked = document.querySelector('#show_thoughts input[type="checkbox"]').checked; document.querySelector('body').classList.toggle('show-thoughts', checked); } """)
with gr.Tab("System Message"):
system_msg = gr.TextArea(system_msg, label="System Message")
with gr.Column(scale=3, min_width=300):
gr.ChatInterface(
streaming,
additional_inputs=[
system_msg,
model
],
examples=[
["How do you do? ", None, None, None],
["How many R's in strawberry?", None, None, None],
["Solve the puzzle of 24 points: 1 2 3 4", None, None, None],
["Find x such that โxโ + x = 23/7. Express x as a common fraction.", None, None, None],
],
cache_examples=False
)
if __name__ == "__main__":
demo.launch()