import streamlit as st from transformers import pipeline from PIL import Image MODEL_1 = "google/vit-base-patch16-224" MIN_ACEPTABLE_SCORE = 0.1 MAX_N_LABELS = 5 MODEL_2 = "nateraw/vit-age-classifier" MODELS = [ "google/vit-base-patch16-224", #Classifição geral "nateraw/vit-age-classifier", #Classifição de idade "microsoft/resnet-50", #Classifição geral "Falconsai/nsfw_image_detection", #Classifição NSFW "cafeai/cafe_aesthetic", #Classifição de estética "microsoft/resnet-18", #Classifição geral "microsoft/resnet-34", #Classifição geral escolhida pelo copilot "microsoft/resnet-101", #Classifição geral escolhida pelo copilot "microsoft/resnet-152", #Classifição geral escolhida pelo copilot "microsoft/swin-tiny-patch4-window7-224",#Classifição geral "-- Repescados --", "timm/vit_large_patch14_clip_224.openai_ft_in12k_in1k", #Classifição geral "-- New --", ] def classify(image, model): classifier = pipeline("image-classification", model=model) result= classifier(image) return result def save_result(result): st.write("In the future, this function will save the result in a database.") def print_result(result): comulative_discarded_score = 0 for i in range(len(result)): if result[i]['score'] < MIN_ACEPTABLE_SCORE: comulative_discarded_score += result[i]['score'] else: st.write(result[i]['label']) st.progress(result[i]['score']) st.write(result[i]['score']) st.write(f"comulative_discarded_score:") st.progress(comulative_discarded_score) st.write(comulative_discarded_score) def main(): st.title("Image Classification") input_image = st.file_uploader("Upload Image") shosen_model = st.selectbox("Select the model to use", MODELS) if input_image is not None: image_to_classify = Image.open(input_image) st.image(image_to_classify, caption="Uploaded Image", use_column_width=True) if st.button("Classify"): image_to_classify = Image.open(input_image) classification_obj1 =[] avable_models = st.selectbox classification_result = classify(image_to_classify, shosen_model) classification_obj1.append(classification_result) print_result(classification_result) save_result(classification_result) if __name__ == "__main__": main()