import os import subprocess from typing import Union from huggingface_hub import whoami is_spaces = True if os.environ.get("SPACE_ID") else False is_canonical = True if os.environ.get("SPACE_ID") == "autotrain-projects/train-flux-lora-ease" else False os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" import sys # Add the current working directory to the Python path sys.path.insert(0, os.getcwd()) import gradio as gr from PIL import Image import torch import uuid import os import shutil import json import yaml from slugify import slugify if is_spaces: from gradio_client import Client, handle_file client = Client("multimodalart/Florence-2-l4") import spaces if not is_spaces: from transformers import AutoProcessor, AutoModelForCausalLM sys.path.insert(0, "ai-toolkit") from toolkit.job import get_job gr.OAuthProfile = None gr.OAuthToken = None MAX_IMAGES = 150 # In case someone marks their duplicate as Zero # def zero_placeholder(): pass if is_spaces: run_captioning = spaces.GPU()(zero_placeholder) def load_captioning(uploaded_files, concept_sentence): uploaded_images = [file for file in uploaded_files if not file.endswith('.txt')] txt_files = [file for file in uploaded_files if file.endswith('.txt')] txt_files_dict = {os.path.splitext(os.path.basename(txt_file))[0]: txt_file for txt_file in txt_files} updates = [] if len(uploaded_images) <= 1: raise gr.Error( "Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)" ) elif len(uploaded_images) > MAX_IMAGES: raise gr.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training") # Update for the captioning_area # for _ in range(3): updates.append(gr.update(visible=True)) # Update visibility and image for each captioning row and image for i in range(1, MAX_IMAGES + 1): # Determine if the current row and image should be visible visible = i <= len(uploaded_images) # Update visibility of the captioning row updates.append(gr.update(visible=visible)) # Update for image component - display image if available, otherwise hide image_value = uploaded_images[i - 1] if visible else None updates.append(gr.update(value=image_value, visible=visible)) corresponding_caption = False if(image_value): base_name = os.path.splitext(os.path.basename(image_value))[0] print(base_name) print(image_value) if base_name in txt_files_dict: with open(txt_files_dict[base_name], 'r') as file: corresponding_caption = file.read() # Update value of captioning area text_value = corresponding_caption if visible and corresponding_caption else "[trigger]" if visible and concept_sentence else None updates.append(gr.update(value=text_value, visible=visible)) # Update for the sample caption area updates.append(gr.update(visible=True)) # Update prompt samples updates.append(gr.update(placeholder=f'A portrait of person in a bustling cafe {concept_sentence}', value=f'A person in a bustling cafe {concept_sentence}')) updates.append(gr.update(placeholder=f"A mountainous landscape in the style of {concept_sentence}")) updates.append(gr.update(placeholder=f"A {concept_sentence} in a mall")) return updates def hide_captioning(): return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) def create_dataset(*inputs): print("Creating dataset") images = inputs[0] destination_folder = str(f"datasets/{uuid.uuid4()}") if not os.path.exists(destination_folder): os.makedirs(destination_folder) jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl") with open(jsonl_file_path, "a") as jsonl_file: for index, image in enumerate(images): new_image_path = shutil.copy(image, destination_folder) original_caption = inputs[index + 1] file_name = os.path.basename(new_image_path) data = {"file_name": file_name, "prompt": original_caption} jsonl_file.write(json.dumps(data) + "\n") return destination_folder def run_captioning_local(images, concept_sentence, *captions): device = "cuda" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 model = AutoModelForCausalLM.from_pretrained( "multimodalart/Florence-2-large-no-flash-attn", torch_dtype=torch_dtype, trust_remote_code=True ).to(device) processor = AutoProcessor.from_pretrained("multimodalart/Florence-2-large-no-flash-attn", trust_remote_code=True) captions = list(captions) for i, image_path in enumerate(images): print(captions[i]) if isinstance(image_path, str): # If image is a file path image = Image.open(image_path).convert("RGB") prompt = "" inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype) generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3 ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation( generated_text, task=prompt, image_size=(image.width, image.height) ) caption_text = parsed_answer[""].replace("The image shows ", "") if concept_sentence: caption_text = f"{caption_text} [trigger]" captions[i] = caption_text yield captions model.to("cpu") del model del processor def run_captioning_spaces(images, concept_sentence, *captions): captions = list(captions) for i, image_path in enumerate(images): print(captions[i]) if isinstance(image_path, str): # If image is a file path image = Image.open(image_path).convert("RGB") answer = client.predict( image=handle_file(image_path), task_prompt="Detailed Caption", text_input=None, api_name="/process_image" )[0] print(f"Caption: {answer}") if(answer.startswith('''{'': "''')): print("enter detailed") answer = answer.replace("''", '""') else: print("enter normal") answer = answer.replace('"', '\\"').replace("'", '"') print(f"Caption: {answer}") parsed_answer = json.loads(answer) caption_text = parsed_answer[""].replace("The image shows ", "") if concept_sentence: caption_text = f"{caption_text} [trigger]" captions[i] = caption_text yield captions def recursive_update(d, u): for k, v in u.items(): if isinstance(v, dict) and v: d[k] = recursive_update(d.get(k, {}), v) else: d[k] = v return d def start_training( lora_name, concept_sentence, which_model, steps, lr, rank, dataset_folder, sample_1, sample_2, sample_3, use_more_advanced_options, more_advanced_options, profile: Union[gr.OAuthProfile, None], oauth_token: Union[gr.OAuthToken, None], ): if not lora_name: raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.") if not is_spaces: try: if whoami()["auth"]["accessToken"]["role"] == "write" or "repo.write" in whoami()["auth"]["accessToken"]["fineGrained"]["scoped"][0]["permissions"]: gr.Info(f"Starting training locally {whoami()['name']}. Your LoRA will be available locally and in Hugging Face after it finishes.") else: raise gr.Error(f"You logged in to Hugging Face with not enough permissions, you need a token that allows writing to your profile.") except: raise gr.Error(f"You logged in to Hugging Face with not enough permissions, you need a token that allows writing to your profile.") print("Started training") slugged_lora_name = slugify(lora_name) # Load the default config with open("train_lora_flux_24gb.yaml" if is_spaces else "ai-toolkit/config/examples/train_lora_flux_24gb.yaml", "r") as f: config = yaml.safe_load(f) # Update the config with user inputs config["config"]["name"] = slugged_lora_name config["config"]["process"][0]["model"]["low_vram"] = True config["config"]["process"][0]["train"]["skip_first_sample"] = True config["config"]["process"][0]["train"]["steps"] = int(steps) config["config"]["process"][0]["train"]["lr"] = float(lr) config["config"]["process"][0]["network"]["linear"] = int(rank) config["config"]["process"][0]["network"]["linear_alpha"] = int(rank) config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder config["config"]["process"][0]["save"]["push_to_hub"] = True try: username = whoami()["name"] if not is_spaces else profile.username except: raise gr.Error("Error trying to retrieve your username. Are you sure you are logged in with Hugging Face?") config["config"]["process"][0]["save"]["hf_repo_id"] = f"{username}/{slugged_lora_name}" config["config"]["process"][0]["save"]["hf_private"] = True if concept_sentence: config["config"]["process"][0]["trigger_word"] = concept_sentence if sample_1 or sample_2 or sample_3: config["config"]["process"][0]["train"]["disable_sampling"] = False config["config"]["process"][0]["sample"]["sample_every"] = steps config["config"]["process"][0]["sample"]["sample_steps"] = 28 config["config"]["process"][0]["sample"]["prompts"] = [] if sample_1: config["config"]["process"][0]["sample"]["prompts"].append(sample_1) if sample_2: config["config"]["process"][0]["sample"]["prompts"].append(sample_2) if sample_3: config["config"]["process"][0]["sample"]["prompts"].append(sample_3) else: config["config"]["process"][0]["train"]["disable_sampling"] = True if(which_model == "[schnell]"): config["config"]["process"][0]["model"]["name_or_path"] = "black-forest-labs/FLUX.1-schnell" config["config"]["process"][0]["model"]["assistant_lora_path"] = "ostris/FLUX.1-schnell-training-adapter" config["config"]["process"][0]["sample"]["sample_steps"] = 4 if(use_more_advanced_options): more_advanced_options_dict = yaml.safe_load(more_advanced_options) config["config"]["process"][0] = recursive_update(config["config"]["process"][0], more_advanced_options_dict) print(config) # Save the updated config # generate a random name for the config random_config_name = str(uuid.uuid4()) os.makedirs("tmp", exist_ok=True) config_path = f"tmp/{random_config_name}-{slugged_lora_name}.yaml" with open(config_path, "w") as f: yaml.dump(config, f) if is_spaces: # copy config to dataset_folder as config.yaml shutil.copy(config_path, dataset_folder + "/config.yaml") # get location of this script script_location = os.path.dirname(os.path.abspath(__file__)) # copy script.py from current directory to dataset_folder shutil.copy(script_location + "/script.py", dataset_folder) # copy requirements.autotrain to dataset_folder as requirements.txt shutil.copy(script_location + "/requirements.autotrain", dataset_folder + "/requirements.txt") # command to run autotrain spacerunner cmd = f"autotrain spacerunner --project-name {slugged_lora_name} --script-path {dataset_folder}" cmd += f" --username {profile.username} --token {oauth_token.token} --backend spaces-l4x1" outcome = subprocess.run(cmd.split()) if outcome.returncode == 0: return f"""# Your training has started. ## - Training Status: {profile.username}/autotrain-{slugged_lora_name} (in the logs tab) ## - Model page: {profile.username}/{slugged_lora_name} (will be available when training finishes)""" else: print("Error: ", outcome.stderr) raise gr.Error("Something went wrong. Make sure the name of your LoRA is unique and try again") else: # run the job locally job = get_job(config_path) job.run() job.cleanup() return f"Training completed successfully. Model saved as {slugged_lora_name}" def swap_visibilty(profile: Union[gr.OAuthProfile, None]): if is_spaces: if profile is None: return gr.update(elem_classes=["main_ui_logged_out"]) else: return gr.update(elem_classes=["main_ui_logged_in"]) else: return gr.update(elem_classes=["main_ui_logged_in"]) def update_pricing(steps, oauth_token: Union[gr.OAuthToken, None]): if(oauth_token and is_spaces): user = whoami(oauth_token.token) seconds_per_iteration = 7.54 total_seconds = (steps * seconds_per_iteration) + 240 cost_per_second = 0.80/60/60 cost = round(cost_per_second * total_seconds, 2) cost_preview = f'''To train this LoRA, a paid L4 GPU will be hooked under the hood during training and then removed once finished. ### Estimated to cost < US$ {str(cost)} for {round(int(total_seconds)/60, 2)} minutes with your current train settings ({int(steps)} iterations at {seconds_per_iteration}s/it)''' if(user["canPay"]): return gr.update(visible=True), cost_preview, gr.update(visible=False), gr.update(visible=True) else: pay_disclaimer = f'''## ⚠️ {user["name"]}, your account doesn't have a payment method. Set one up here and come back here to train your LoRA

''' return gr.update(visible=True), pay_disclaimer+cost_preview, gr.update(visible=True), gr.update(visible=False) else: return gr.update(visible=False), "", gr.update(visible=False), gr.update(visible=True) def swap_base_model(model): return gr.update(visible=True) if model == "[dev] (high quality model, non-commercial license)" else gr.update(visible=False) config_yaml = ''' device: cuda:0 model: is_flux: true quantize: true network: linear: 16 #it will overcome the 'rank' parameter linear_alpha: 16 #you can have an alpha different than the ranking if you'd like type: lora sample: guidance_scale: 3.5 height: 1024 neg: '' #doesn't work for FLUX sample_every: 1000 sample_steps: 28 sampler: flowmatch seed: 42 walk_seed: true width: 1024 save: dtype: float16 hf_private: true max_step_saves_to_keep: 4 push_to_hub: true save_every: 10000 train: batch_size: 1 dtype: bf16 ema_config: ema_decay: 0.99 use_ema: true gradient_accumulation_steps: 1 gradient_checkpointing: true noise_scheduler: flowmatch optimizer: adamw8bit #options: prodigy, dadaptation, adamw, adamw8bit, lion, lion8bit train_text_encoder: false #probably doesn't work for flux train_unet: true ''' theme = gr.themes.Monochrome( text_size=gr.themes.Size(lg="18px", md="15px", sm="13px", xl="22px", xs="12px", xxl="24px", xxs="9px"), font=[gr.themes.GoogleFont("Source Sans Pro"), "ui-sans-serif", "system-ui", "sans-serif"], ) css = """ h1{font-size: 2em} h3{margin-top: 0} #component-1{text-align:center} .main_ui_logged_out{opacity: 0.3; pointer-events: none} .tabitem{border: 0px} .group_padding{padding: .55em} #space_model .wrap > label:last-child{opacity: 0.3; pointer-events:none} """ with gr.Blocks(theme=theme, css=css) as demo: gr.Markdown( """# LoRA Ease for FLUX 🧞‍♂️ ### Train a high quality FLUX LoRA in a breeze ༄ using [Ostris' AI Toolkit](https://github.com/ostris/ai-toolkit) and [AutoTrain Advanced](https://github.com/huggingface/autotrain-advanced)
""" ) if is_spaces: gr.LoginButton("Sign in with Hugging Face to train your LoRA on Spaces", visible=is_spaces) with gr.Tab("Train on Spaces" if is_spaces else "Train locally"): with gr.Column() as main_ui: with gr.Group(): with gr.Row(): lora_name = gr.Textbox( label="The name of your LoRA", info="This has to be a unique name", placeholder="e.g.: Persian Miniature Painting style, Cat Toy", ) concept_sentence = gr.Textbox( label="Trigger word/sentence", info="Trigger word or sentence to be used", placeholder="uncommon word like p3rs0n or trtcrd, or sentence like 'in the style of CNSTLL'", interactive=True, ) which_model = gr.Radio( [("[schnell] (4 step fast model)", "[schnell]"), ("[dev] (high quality model, non-commercial license - available if you duplicate this space or locally)" if is_canonical else "[dev] (high quality model, non-commercial license)", "[dev]")], label="Which base model to train?", elem_id="space_model" if is_canonical else "local_model", value="[schnell]" if is_canonical else "[dev]" ) model_warning = gr.Markdown("""> [dev] model license is non-commercial. By choosing to fine-tune [dev], you must agree with [its license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md) and make sure the LoRA you will train and the training process you would start does not violate it. """, visible=False) with gr.Group(visible=True) as image_upload: with gr.Row(): images = gr.File( file_types=["image", ".txt"], label="Upload your images", file_count="multiple", interactive=True, visible=True, scale=1, ) with gr.Column(scale=3, visible=False) as captioning_area: with gr.Column(): gr.Markdown( """# Custom captioning

You can optionally add a custom caption for each image (or use an AI model for this). [trigger] will represent your concept sentence/trigger word.

""", elem_classes="group_padding") do_captioning = gr.Button("Add AI captions with Florence-2") output_components = [captioning_area] caption_list = [] for i in range(1, MAX_IMAGES + 1): locals()[f"captioning_row_{i}"] = gr.Row(visible=False) with locals()[f"captioning_row_{i}"]: locals()[f"image_{i}"] = gr.Image( type="filepath", width=111, height=111, min_width=111, interactive=False, scale=2, show_label=False, show_share_button=False, show_download_button=False, ) locals()[f"caption_{i}"] = gr.Textbox( label=f"Caption {i}", scale=15, interactive=True ) output_components.append(locals()[f"captioning_row_{i}"]) output_components.append(locals()[f"image_{i}"]) output_components.append(locals()[f"caption_{i}"]) caption_list.append(locals()[f"caption_{i}"]) with gr.Accordion("Advanced options", open=False): steps = gr.Number(label="Steps", value=1000, minimum=1, maximum=10000, step=1) lr = gr.Number(label="Learning Rate", value=4e-4, minimum=1e-6, maximum=1e-3, step=1e-6) rank = gr.Number(label="LoRA Rank", value=16, minimum=4, maximum=128, step=4) with gr.Accordion("Even more advanced options", open=False): if(is_spaces): gr.Markdown("Attention: changing this parameters may make your training fail or go out-of-memory if training on Spaces. Only change settings here it if you know what you are doing. Beware that training is done in an L4 GPU with 24GB of RAM") use_more_advanced_options = gr.Checkbox(label="Use more advanced options", value=False) more_advanced_options = gr.Code(config_yaml, language="yaml") with gr.Accordion("Sample prompts (optional)", visible=False) as sample: gr.Markdown( "Include sample prompts to test out your trained model. Don't forget to include your trigger word/sentence (optional)" ) sample_1 = gr.Textbox(label="Test prompt 1") sample_2 = gr.Textbox(label="Test prompt 2") sample_3 = gr.Textbox(label="Test prompt 3") with gr.Group(visible=False) as cost_preview: cost_preview_info = gr.Markdown(elem_id="cost_preview_info", elem_classes="group_padding") payment_update = gr.Button("I have set up a payment method", visible=False) output_components.append(sample) output_components.append(sample_1) output_components.append(sample_2) output_components.append(sample_3) start = gr.Button("Start training", visible=False) progress_area = gr.Markdown("") with gr.Tab("Train on your device" if is_spaces else "Instructions"): gr.Markdown(f"""To use FLUX LoRA Ease locally with this UI, you can clone this repository (yes, HF Spaces are git repos!). You'll need ~23GB of VRAM ```bash git clone https://huggingface.co/spaces/autotrain-projects/flux-lora-ease cd flux-lora-ease ## Optional, start a venv environment (install torch first) ## python3 -m venv venv source venv/bin/activate # .\venv\Scripts\activate on windows ## End of optional ## pip install -r requirements_local.txt ``` Then you can install ai-toolkit ```bash git clone https://github.com/ostris/ai-toolkit.git cd ai-toolkit git submodule update --init --recursive pip3 install torch pip3 install -r requirements.txt cd .. ``` Login with Hugging Face to access FLUX.1 [dev], choose a token with `write` permissions to push your LoRAs to the HF Hub ```bash huggingface-cli login ``` Finally, you can run FLUX LoRA Ease locally with a UI by doing a simple ```py python app.py ``` If you prefer command line, you can run Ostris' [AI Toolkit](https://github.com/ostris/ai-toolkit) yourself directly. """ ) dataset_folder = gr.State() images.upload( load_captioning, inputs=[images, concept_sentence], outputs=output_components ).then( update_pricing, inputs=[steps], outputs=[cost_preview, cost_preview_info, payment_update, start] ) images.clear( hide_captioning, outputs=[captioning_area, cost_preview, sample, start] ) images.delete( load_captioning, inputs=[images, concept_sentence], outputs=output_components ).then( update_pricing, inputs=[steps], outputs=[cost_preview, cost_preview_info, payment_update, start] ) gr.on( triggers=[steps.change, payment_update.click], fn=update_pricing, inputs=[steps], outputs=[cost_preview, cost_preview_info, payment_update, start] ) which_model.change( fn=swap_base_model, inputs=which_model, outputs=model_warning ) start.click(fn=create_dataset, inputs=[images] + caption_list, outputs=dataset_folder).then( fn=start_training, inputs=[ lora_name, concept_sentence, which_model, steps, lr, rank, dataset_folder, sample_1, sample_2, sample_3, use_more_advanced_options, more_advanced_options ], outputs=progress_area, ) do_captioning.click(fn=run_captioning_spaces if is_spaces else run_captioning_local, inputs=[images, concept_sentence] + caption_list, outputs=caption_list) demo.load(fn=swap_visibilty, outputs=main_ui) if __name__ == "__main__": demo.launch(share=True, show_error=True)