|
import random |
|
|
|
import gradio as gr |
|
import huggingface_hub |
|
import imageio |
|
import numpy as np |
|
import onnxruntime as rt |
|
from numpy.random import RandomState |
|
from skimage import transform |
|
|
|
|
|
class Model: |
|
def __init__(self): |
|
self.g_synthesis = None |
|
self.g_mapping = None |
|
self.load_models() |
|
|
|
def load_models(self): |
|
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] |
|
g_mapping_path = huggingface_hub.hf_hub_download("skytnt/waifu-gan", "g_mapping.onnx") |
|
g_synthesis_path = huggingface_hub.hf_hub_download("skytnt/waifu-gan", "g_synthesis.onnx") |
|
self.g_mapping = rt.InferenceSession(g_mapping_path, providers=providers) |
|
self.g_synthesis = rt.InferenceSession(g_synthesis_path, providers=providers) |
|
|
|
def get_img(self, w): |
|
img = self.g_synthesis.run(None, {'w': w})[0] |
|
return (img.transpose(0, 2, 3, 1) * 127.5 + 128).clip(0, 255).astype(np.uint8)[0] |
|
|
|
def get_w(self, z, psi1, psi2): |
|
return self.g_mapping.run(None, {'z': z, 'psi': np.asarray([psi1, psi2], dtype=np.float32)})[0] |
|
|
|
def gen_video(self, w1, w2, path, frame_num=10): |
|
video = imageio.get_writer(path, mode='I', fps=frame_num // 2, codec='libx264', bitrate='16M') |
|
lin = np.linspace(0, 1, frame_num) |
|
for i in range(0, frame_num): |
|
img = self.get_img(((1 - lin[i]) * w1) + (lin[i] * w2)) |
|
video.append_data(img) |
|
video.close() |
|
|
|
|
|
def get_thumbnail(img): |
|
img_new = np.full((192, 288, 3), 200, dtype=np.uint8) |
|
img_new[:, 80:208] = transform.resize(img, (192, 128), preserve_range=True) |
|
return img_new |
|
|
|
|
|
def gen_fn(method, seed, psi1, psi2): |
|
if method == 0: |
|
seed = random.randint(0, 2 ** 32 -1) |
|
z = RandomState(int(seed)).randn(1, 1024) |
|
w = model.get_w(z.astype(dtype=np.float32), psi1, psi2) |
|
img_out = model.get_img(w) |
|
return img_out, seed, w, get_thumbnail(img_out) |
|
|
|
|
|
def gen_video_fn(w1, w2, frame): |
|
if w1 is None or w2 is None: |
|
return None |
|
model.gen_video(w1, w2, "video.mp4", int(frame)) |
|
return "video.mp4" |
|
|
|
|
|
if __name__ == '__main__': |
|
model = Model() |
|
|
|
app = gr.Blocks() |
|
with app: |
|
gr.Markdown("# Waifu GAN\n\n" |
|
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=skytnt.waifu-gan)\n\n") |
|
with gr.Tabs(): |
|
with gr.TabItem("generate image"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
gen_input1 = gr.Radio(label="method", value="random", |
|
choices=["random", "use seed"], type="index") |
|
gen_input2 = gr.Slider(minimum=0, maximum=2 ** 32 - 1, step=1, value=0, |
|
label="seed") |
|
gen_input3 = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="truncation psi 1") |
|
gen_input4 = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="truncation psi 2") |
|
with gr.Group(): |
|
gen_submit = gr.Button("Generate", variant="primary") |
|
with gr.Column(): |
|
gen_output1 = gr.Image(label="output image") |
|
select_img_input_w1 = gr.Variable() |
|
select_img_input_img1 = gr.Variable() |
|
|
|
with gr.TabItem("generate video"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("## generate video between 2 images") |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("please select image 1") |
|
select_img1_dropdown = gr.Radio(label="source", value="current generated image", |
|
choices=["current generated image"], type="index") |
|
with gr.Group(): |
|
select_img1_button = gr.Button("Select", variant="primary") |
|
select_img1_output_img = gr.Image(label="selected image 1") |
|
select_img1_output_w = gr.Variable() |
|
with gr.Column(): |
|
gr.Markdown("please select image 2") |
|
select_img2_dropdown = gr.Radio(label="source", value="current generated image", |
|
choices=["current generated image"], type="index") |
|
with gr.Group(): |
|
select_img2_button = gr.Button("Select", variant="primary") |
|
select_img2_output_img = gr.Image(label="selected image 2") |
|
select_img2_output_w = gr.Variable() |
|
generate_video_frame = gr.Slider(minimum=10, maximum=30, step=1, label="frame", value=15) |
|
with gr.Group(): |
|
generate_video_button = gr.Button("Generate", variant="primary") |
|
with gr.Column(): |
|
generate_video_output = gr.Video(label="output video") |
|
gen_submit.click(gen_fn, [gen_input1, gen_input2, gen_input3, gen_input4], |
|
[gen_output1, gen_input2, select_img_input_w1, select_img_input_img1]) |
|
select_img1_button.click(lambda i, img1, w1: (img1, w1), |
|
[select_img1_dropdown, select_img_input_img1, select_img_input_w1], |
|
[select_img1_output_img, select_img1_output_w]) |
|
select_img2_button.click(lambda i, img1, w1: (img1, w1), |
|
[select_img2_dropdown, select_img_input_img1, select_img_input_w1], |
|
[select_img2_output_img, select_img2_output_w]) |
|
generate_video_button.click(gen_video_fn, |
|
[select_img1_output_w, select_img2_output_w, generate_video_frame], |
|
[generate_video_output]) |
|
app.launch() |
|
|