Spaces:
Running
Running
import sys | |
import threading | |
from typing import List, Union | |
import tqdm | |
class ProgressListener: | |
def on_progress(self, current: Union[int, float], total: Union[int, float]): | |
self.total = total | |
def on_finished(self): | |
pass | |
class ProgressListenerHandle: | |
def __init__(self, listener: ProgressListener): | |
self.listener = listener | |
def __enter__(self): | |
register_thread_local_progress_listener(self.listener) | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
unregister_thread_local_progress_listener(self.listener) | |
if exc_type is None: | |
self.listener.on_finished() | |
class SubTaskProgressListener(ProgressListener): | |
""" | |
A sub task listener that reports the progress of a sub task to a base task listener | |
Parameters | |
---------- | |
base_task_listener : ProgressListener | |
The base progress listener to accumulate overall progress in. | |
base_task_total : float | |
The maximum total progress that will be reported to the base progress listener. | |
sub_task_start : float | |
The starting progress of a sub task, in respect to the base progress listener. | |
sub_task_total : float | |
The total amount of progress a sub task will report to the base progress listener. | |
""" | |
def __init__( | |
self, | |
base_task_listener: ProgressListener, | |
base_task_total: float, | |
sub_task_start: float, | |
sub_task_total: float, | |
): | |
self.base_task_listener = base_task_listener | |
self.base_task_total = base_task_total | |
self.sub_task_start = sub_task_start | |
self.sub_task_total = sub_task_total | |
def on_progress(self, current: Union[int, float], total: Union[int, float]): | |
sub_task_progress_frac = current / total | |
sub_task_progress = self.sub_task_start + self.sub_task_total * sub_task_progress_frac | |
self.base_task_listener.on_progress(sub_task_progress, self.base_task_total) | |
def on_finished(self): | |
self.base_task_listener.on_progress(self.sub_task_start + self.sub_task_total, self.base_task_total) | |
class _CustomProgressBar(tqdm.tqdm): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self._current = self.n # Set the initial value | |
def update(self, n): | |
super().update(n) | |
# Because the progress bar might be disabled, we need to manually update the progress | |
self._current += n | |
# Inform listeners | |
listeners = _get_thread_local_listeners() | |
for listener in listeners: | |
listener.on_progress(self._current, self.total) | |
_thread_local = threading.local() | |
def _get_thread_local_listeners(): | |
if not hasattr(_thread_local, 'listeners'): | |
_thread_local.listeners = [] | |
return _thread_local.listeners | |
_hooked = False | |
def init_progress_hook(): | |
global _hooked | |
if _hooked: | |
return | |
# Inject into tqdm.tqdm of Whisper, so we can see progress | |
import whisper.transcribe | |
transcribe_module = sys.modules['whisper.transcribe'] | |
transcribe_module.tqdm.tqdm = _CustomProgressBar | |
_hooked = True | |
def register_thread_local_progress_listener(progress_listener: ProgressListener): | |
# This is a workaround for the fact that the progress bar is not exposed in the API | |
init_progress_hook() | |
listeners = _get_thread_local_listeners() | |
listeners.append(progress_listener) | |
def unregister_thread_local_progress_listener(progress_listener: ProgressListener): | |
listeners = _get_thread_local_listeners() | |
if progress_listener in listeners: | |
listeners.remove(progress_listener) | |
def create_progress_listener_handle(progress_listener: ProgressListener): | |
return ProgressListenerHandle(progress_listener) | |
# Example usage | |
if __name__ == '__main__': | |
class PrintingProgressListener: | |
def on_progress(self, current: Union[int, float], total: Union[int, float]): | |
print(f"Progress: {current}/{total}") | |
def on_finished(self): | |
print("Finished") | |
import whisper | |
model = whisper.load_model("medium") | |
with create_progress_listener_handle(PrintingProgressListener()) as listener: | |
# Set verbose to None to disable the progress bar, as we are using our own | |
result = model.transcribe("J:\\Dev\\OpenAI\\whisper\\tests\\Noriko\\out.mka", language="Japanese", fp16=False, verbose=None) | |
print(result) | |
print("Done") |