Spaces:
Runtime error
Runtime error
File size: 71,135 Bytes
75ba0e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import random
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.distributed import fsdp_wrap
from fairseq.models import (
FairseqEncoder,
FairseqEncoderDecoderModel,
FairseqIncrementalDecoder,
register_model,
register_model_architecture,
)
from fairseq.modules import (
AdaptiveSoftmax,
BaseLayer,
FairseqDropout,
LayerDropModuleList,
LayerNorm,
SinusoidalPositionalEmbedding,
GradMultiply
)
from fairseq.modules.checkpoint_activations import checkpoint_wrapper
from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_
from torch import Tensor
from .unify_transformer_layer import TransformerEncoderLayer, TransformerDecoderLayer
from .resnet import ResNet
DEFAULT_MAX_SOURCE_POSITIONS = 1024
DEFAULT_MAX_TARGET_POSITIONS = 1024
DEFAULT_MIN_PARAMS_TO_WRAP = int(1e8)
def BatchNorm2d(out_chan, momentum=0.1, eps=1e-3):
return nn.SyncBatchNorm.convert_sync_batchnorm(
nn.BatchNorm2d(out_chan, momentum=momentum, eps=eps)
)
def make_token_bucket_position(bucket_size, max_position=DEFAULT_MAX_SOURCE_POSITIONS):
context_pos = torch.arange(max_position, dtype=torch.long)[:, None]
memory_pos = torch.arange(max_position, dtype=torch.long)[None, :]
relative_pos = context_pos - memory_pos
sign = torch.sign(relative_pos)
mid = bucket_size // 2
abs_pos = torch.where((relative_pos<mid) & (relative_pos > -mid), mid-1, torch.abs(relative_pos))
log_pos = torch.ceil(torch.log(abs_pos/mid)/math.log((max_position-1)/mid) * (mid-1)) + mid
log_pos = log_pos.int()
bucket_pos = torch.where(abs_pos.le(mid), relative_pos, log_pos*sign).long()
return bucket_pos + bucket_size - 1
def make_image_bucket_position(bucket_size, num_relative_distance):
coords_h = torch.arange(bucket_size)
coords_w = torch.arange(bucket_size)
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += bucket_size - 1 # shift to start from 0
relative_coords[:, :, 1] += bucket_size - 1
relative_coords[:, :, 0] *= 2 * bucket_size - 1
relative_position_index = torch.zeros(size=(bucket_size * bucket_size + 1,) * 2, dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = num_relative_distance - 3
relative_position_index[0:, 0] = num_relative_distance - 2
relative_position_index[0, 0] = num_relative_distance - 1
return relative_position_index
@register_model("unify_transformer")
class TransformerModel(FairseqEncoderDecoderModel):
"""
Transformer model from `"Attention Is All You Need" (Vaswani, et al, 2017)
<https://arxiv.org/abs/1706.03762>`_.
Args:
encoder (TransformerEncoder): the encoder
decoder (TransformerDecoder): the decoder
The Transformer model provides the following named architectures and
command-line arguments:
.. argparse::
:ref: fairseq.models.transformer_parser
:prog:
"""
def __init__(self, args, encoder, decoder):
super().__init__(encoder, decoder)
self.args = args
self.supports_align_args = True
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
# fmt: off
parser.add_argument('--activation-fn',
choices=utils.get_available_activation_fns(),
help='activation function to use')
parser.add_argument('--dropout', type=float, metavar='D',
help='dropout probability')
parser.add_argument('--attention-dropout', type=float, metavar='D',
help='dropout probability for attention weights')
parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D',
help='dropout probability after activation in FFN.')
parser.add_argument('--encoder-embed-path', type=str, metavar='STR',
help='path to pre-trained encoder embedding')
parser.add_argument('--encoder-embed-dim', type=int, metavar='N',
help='encoder embedding dimension')
parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N',
help='encoder embedding dimension for FFN')
parser.add_argument('--encoder-layers', type=int, metavar='N',
help='num encoder layers')
parser.add_argument('--encoder-attention-heads', type=int, metavar='N',
help='num encoder attention heads')
parser.add_argument('--encoder-normalize-before', action='store_true',
help='apply layernorm before each encoder block')
parser.add_argument('--encoder-learned-pos', action='store_true',
help='use learned positional embeddings in the encoder')
parser.add_argument('--decoder-embed-path', type=str, metavar='STR',
help='path to pre-trained decoder embedding')
parser.add_argument('--decoder-embed-dim', type=int, metavar='N',
help='decoder embedding dimension')
parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N',
help='decoder embedding dimension for FFN')
parser.add_argument('--decoder-layers', type=int, metavar='N',
help='num decoder layers')
parser.add_argument('--decoder-attention-heads', type=int, metavar='N',
help='num decoder attention heads')
parser.add_argument('--decoder-learned-pos', action='store_true',
help='use learned positional embeddings in the decoder')
parser.add_argument('--decoder-normalize-before', action='store_true',
help='apply layernorm before each decoder block')
parser.add_argument('--decoder-output-dim', type=int, metavar='N',
help='decoder output dimension (extra linear layer '
'if different from decoder embed dim')
parser.add_argument('--share-decoder-input-output-embed', action='store_true',
help='share decoder input and output embeddings')
parser.add_argument('--share-all-embeddings', action='store_true',
help='share encoder, decoder and output embeddings'
' (requires shared dictionary and embed dim)')
parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true',
help='if set, disables positional embeddings (outside self attention)')
parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR',
help='comma separated list of adaptive softmax cutoff points. '
'Must be used with adaptive_loss criterion'),
parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D',
help='sets adaptive softmax dropout for the tail projections')
parser.add_argument('--layernorm-embedding', action='store_true',
help='add layernorm to embedding')
parser.add_argument('--no-scale-embedding', action='store_true',
help='if True, dont scale embeddings')
parser.add_argument('--checkpoint-activations', action='store_true',
help='checkpoint activations at each layer, which saves GPU '
'memory usage at the cost of some additional compute')
parser.add_argument('--offload-activations', action='store_true',
help='checkpoint activations at each layer, then save to gpu. Sets --checkpoint-activations.')
# args for "Cross+Self-Attention for Transformer Models" (Peitz et al., 2019)
parser.add_argument('--no-cross-attention', default=False, action='store_true',
help='do not perform cross-attention')
parser.add_argument('--cross-self-attention', default=False, action='store_true',
help='perform cross+self-attention')
# args for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019)
parser.add_argument('--encoder-layerdrop', type=float, metavar='D', default=0,
help='LayerDrop probability for encoder')
parser.add_argument('--decoder-layerdrop', type=float, metavar='D', default=0,
help='LayerDrop probability for decoder')
parser.add_argument('--encoder-layers-to-keep', default=None,
help='which layers to *keep* when pruning as a comma-separated list')
parser.add_argument('--decoder-layers-to-keep', default=None,
help='which layers to *keep* when pruning as a comma-separated list')
# args for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020)
parser.add_argument('--quant-noise-pq', type=float, metavar='D', default=0,
help='iterative PQ quantization noise at training time')
parser.add_argument('--quant-noise-pq-block-size', type=int, metavar='D', default=8,
help='block size of quantization noise at training time')
parser.add_argument('--quant-noise-scalar', type=float, metavar='D', default=0,
help='scalar quantization noise and scalar quantization at training time')
# args for Fully Sharded Data Parallel (FSDP) training
parser.add_argument(
'--min-params-to-wrap', type=int, metavar='D', default=DEFAULT_MIN_PARAMS_TO_WRAP,
help=(
'minimum number of params for a layer to be wrapped with FSDP() when '
'training with --ddp-backend=fully_sharded. Smaller values will '
'improve memory efficiency, but may make torch.distributed '
'communication less efficient due to smaller input sizes. This option '
'is set to 0 (i.e., always wrap) when --checkpoint-activations or '
'--offload-activations are passed.'
)
)
parser.add_argument('--resnet-drop-path-rate', type=float,
help='resnet drop path rate')
parser.add_argument('--encoder-drop-path-rate', type=float,
help='encoder drop path rate')
parser.add_argument('--decoder-drop-path-rate', type=float,
help='encoder drop path rate')
parser.add_argument('--token-bucket-size', type=int,
help='token bucket size')
parser.add_argument('--image-bucket-size', type=int,
help='image bucket size')
parser.add_argument('--attn-scale-factor', type=float,
help='attention scale factor')
parser.add_argument('--freeze-resnet', action='store_true',
help='freeze resnet')
parser.add_argument('--freeze-encoder-embedding', action='store_true',
help='freeze encoder token embedding')
parser.add_argument('--freeze-decoder-embedding', action='store_true',
help='freeze decoder token embedding')
parser.add_argument('--add-type-embedding', action='store_true',
help='add source/region/patch type embedding')
parser.add_argument('--resnet-type', choices=['resnet50', 'resnet101', 'resnet152'],
help='resnet type')
parser.add_argument('--resnet-model-path', type=str, metavar='STR',
help='path to load resnet')
parser.add_argument('--code-image-size', type=int,
help='code image size')
parser.add_argument('--patch-layernorm-embedding', action='store_true',
help='add layernorm to patch embedding')
parser.add_argument('--code-layernorm-embedding', action='store_true',
help='add layernorm to code embedding')
parser.add_argument('--entangle-position-embedding', action='store_true',
help='entangle position embedding')
parser.add_argument('--disable-entangle', action='store_true',
help='disable entangle')
parser.add_argument('--sync-bn', action='store_true',
help='sync batchnorm')
parser.add_argument('--scale-attn', action='store_true',
help='scale attn')
parser.add_argument('--scale-fc', action='store_true',
help='scale fc')
parser.add_argument('--scale-heads', action='store_true',
help='scale heads')
parser.add_argument('--scale-resids', action='store_true',
help='scale resids')
# fmt: on
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
# make sure all arguments are present in older models
base_architecture(args)
if args.encoder_layers_to_keep:
args.encoder_layers = len(args.encoder_layers_to_keep.split(","))
if args.decoder_layers_to_keep:
args.decoder_layers = len(args.decoder_layers_to_keep.split(","))
if getattr(args, "max_source_positions", None) is None:
args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS
if getattr(args, "max_target_positions", None) is None:
args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS
src_dict, tgt_dict = task.source_dictionary, task.target_dictionary
if args.share_all_embeddings:
if src_dict != tgt_dict:
raise ValueError("--share-all-embeddings requires a joined dictionary")
if args.encoder_embed_dim != args.decoder_embed_dim:
raise ValueError(
"--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim"
)
if args.decoder_embed_path and (
args.decoder_embed_path != args.encoder_embed_path
):
raise ValueError(
"--share-all-embeddings not compatible with --decoder-embed-path"
)
encoder_embed_tokens = cls.build_embedding(
args, src_dict, args.encoder_embed_dim, args.encoder_embed_path
)
decoder_embed_tokens = encoder_embed_tokens
args.share_decoder_input_output_embed = True
else:
encoder_embed_tokens = cls.build_embedding(
args, src_dict, args.encoder_embed_dim, args.encoder_embed_path
)
decoder_embed_tokens = cls.build_embedding(
args, tgt_dict, args.decoder_embed_dim, args.decoder_embed_path
)
if getattr(args, "freeze_encoder_embedding", False):
encoder_embed_tokens.weight.requires_grad = False
if getattr(args, "freeze_decoder_embedding", False):
decoder_embed_tokens.weight.requires_grad = False
if getattr(args, "offload_activations", False):
args.checkpoint_activations = True # offloading implies checkpointing
encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens)
decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens)
if not args.share_all_embeddings:
min_params_to_wrap = getattr(
args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP
)
# fsdp_wrap is a no-op when --ddp-backend != fully_sharded
encoder = fsdp_wrap(encoder, min_num_params=min_params_to_wrap)
decoder = fsdp_wrap(decoder, min_num_params=min_params_to_wrap)
return cls(args, encoder, decoder)
@classmethod
def build_embedding(cls, args, dictionary, embed_dim, path=None):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
emb = Embedding(num_embeddings, embed_dim, padding_idx)
# if provided, load from preloaded dictionaries
if path:
embed_dict = utils.parse_embedding(path)
utils.load_embedding(embed_dict, dictionary, emb)
return emb
@classmethod
def build_encoder(cls, args, src_dict, embed_tokens):
return TransformerEncoder(args, src_dict, embed_tokens)
@classmethod
def build_decoder(cls, args, tgt_dict, embed_tokens):
return TransformerDecoder(
args,
tgt_dict,
embed_tokens,
no_encoder_attn=getattr(args, "no_cross_attention", False),
)
# TorchScript doesn't support optional arguments with variable length (**kwargs).
# Current workaround is to add union of all arguments in child classes.
def forward(
self,
src_tokens,
src_lengths,
prev_output_tokens,
return_all_hiddens: bool = True,
features_only: bool = False,
alignment_layer: Optional[int] = None,
alignment_heads: Optional[int] = None,
):
"""
Run the forward pass for an encoder-decoder model.
Copied from the base class, but without ``**kwargs``,
which are not supported by TorchScript.
"""
encoder_out = self.encoder(
src_tokens, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens
)
decoder_out = self.decoder(
prev_output_tokens,
encoder_out=encoder_out,
features_only=features_only,
alignment_layer=alignment_layer,
alignment_heads=alignment_heads,
src_lengths=src_lengths,
return_all_hiddens=return_all_hiddens,
)
return decoder_out
# Since get_normalized_probs is in the Fairseq Model which is not scriptable,
# I rewrite the get_normalized_probs from Base Class to call the
# helper function in the Base Class.
@torch.jit.export
def get_normalized_probs(
self,
net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
log_probs: bool,
sample: Optional[Dict[str, Tensor]] = None,
):
"""Get normalized probabilities (or log probs) from a net's output."""
return self.get_normalized_probs_scriptable(net_output, log_probs, sample)
class TransformerEncoder(FairseqEncoder):
"""
Transformer encoder consisting of *args.encoder_layers* layers. Each layer
is a :class:`TransformerEncoderLayer`.
Args:
args (argparse.Namespace): parsed command-line arguments
dictionary (~fairseq.data.Dictionary): encoding dictionary
embed_tokens (torch.nn.Embedding): input embedding
"""
def __init__(self, args, dictionary, embed_tokens):
self.args = args
super().__init__(dictionary)
self.register_buffer("version", torch.Tensor([3]))
self.dropout_module = FairseqDropout(
args.dropout, module_name=self.__class__.__name__
)
self.encoder_layerdrop = args.encoder_layerdrop
embed_dim = embed_tokens.embedding_dim
self.padding_idx = embed_tokens.padding_idx
self.max_source_positions = args.max_source_positions
self.num_attention_heads = args.encoder_attention_heads
self.embed_tokens = embed_tokens
self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim)
if getattr(args, "layernorm_embedding", False):
self.layernorm_embedding = LayerNorm(embed_dim)
else:
self.layernorm_embedding = None
if getattr(args, "add_type_embedding", False):
self.type_embedding = Embedding(2, embed_dim, padding_idx=None)
else:
self.type_embedding = None
if getattr(args, "sync_bn", False):
norm_layer = BatchNorm2d
else:
norm_layer = None
if args.resnet_type == 'resnet101':
self.embed_images = ResNet([3, 4, 23], norm_layer=norm_layer, drop_path_rate=args.resnet_drop_path_rate)
elif args.resnet_type == 'resnet152':
self.embed_images = ResNet([3, 8, 36], norm_layer=norm_layer, drop_path_rate=args.resnet_drop_path_rate)
else:
raise NotImplementedError
self.image_proj = Linear(1024, embed_dim)
if getattr(args, "resnet_model_path", None):
print("load resnet {}".format(args.resnet_model_path))
resnet_state_dict = torch.load(self.args.resnet_model_path)
self.embed_images.load_state_dict(resnet_state_dict)
if getattr(args, "patch_layernorm_embedding", False):
self.patch_layernorm_embedding = LayerNorm(embed_dim)
else:
self.patch_layernorm_embedding = None
self.embed_positions = Embedding(args.max_source_positions + 2, embed_dim)
self.embed_image_positions = Embedding(args.image_bucket_size ** 2 + 1, embed_dim)
self.pos_ln = LayerNorm(embed_dim)
self.image_pos_ln = LayerNorm(embed_dim)
self.pos_scaling = float(embed_dim / args.encoder_attention_heads * args.attn_scale_factor) ** -0.5
self.pos_q_linear = nn.Linear(embed_dim, embed_dim)
self.pos_k_linear = nn.Linear(embed_dim, embed_dim)
if not args.adaptive_input and args.quant_noise_pq > 0:
self.quant_noise = apply_quant_noise_(
nn.Linear(embed_dim, embed_dim, bias=False),
args.quant_noise_pq,
args.quant_noise_pq_block_size,
)
else:
self.quant_noise = None
if self.encoder_layerdrop > 0.0:
self.layers = LayerDropModuleList(p=self.encoder_layerdrop)
else:
self.layers = nn.ModuleList([])
dpr = [x.item() for x in torch.linspace(0, args.encoder_drop_path_rate, args.encoder_layers)]
self.layers.extend(
[self.build_encoder_layer(args, drop_path_rate=dpr[i]) for i in range(args.encoder_layers)]
)
self.num_layers = len(self.layers)
if args.encoder_normalize_before:
self.layer_norm = LayerNorm(embed_dim)
else:
self.layer_norm = None
token_bucket_size = args.token_bucket_size
token_num_rel_dis = 2 * token_bucket_size - 1
token_rp_bucket = make_token_bucket_position(token_bucket_size)
self.token_rel_pos_table_list = nn.ModuleList(
[Embedding(token_num_rel_dis, self.num_attention_heads, zero_init=True) for _ in range(args.encoder_layers)]
)
image_bucket_size = args.image_bucket_size
image_num_rel_dis = (2 * image_bucket_size - 1) * (2 * image_bucket_size - 1) + 3
image_rp_bucket = make_image_bucket_position(image_bucket_size, image_num_rel_dis)
self.image_rel_pos_table_list = nn.ModuleList(
[Embedding(image_num_rel_dis, self.num_attention_heads, zero_init=True) for _ in range(args.encoder_layers)]
)
self.register_buffer("token_rp_bucket", token_rp_bucket)
self.register_buffer("image_rp_bucket", image_rp_bucket)
self.entangle_position_embedding = args.entangle_position_embedding
def train(self, mode=True):
super(TransformerEncoder, self).train(mode)
if getattr(self.args, "freeze_resnet", False):
for m in self.embed_images.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
m.weight.requires_grad = False
m.bias.requires_grad = False
def build_encoder_layer(self, args, drop_path_rate=0.0):
layer = TransformerEncoderLayer(args, drop_path_rate=drop_path_rate)
checkpoint = getattr(args, "checkpoint_activations", False)
if checkpoint:
offload_to_cpu = getattr(args, "offload_activations", False)
layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu)
# if we are checkpointing, enforce that FSDP always wraps the
# checkpointed layer, regardless of layer size
min_params_to_wrap = (
getattr(args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP)
if not checkpoint else 0
)
layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap)
return layer
def get_rel_pos_bias(self, x, idx):
seq_len = x.size(1)
rp_bucket = self.token_rp_bucket[:seq_len, :seq_len]
values = F.embedding(rp_bucket, self.token_rel_pos_table_list[idx].weight)
values = values.unsqueeze(0).expand(x.size(0), -1, -1, -1)
values = values.permute([0, 3, 1, 2])
return values.contiguous()
def get_image_rel_pos_bias(self, image_position_ids, idx):
bsz, seq_len = image_position_ids.shape
rp_bucket_size = self.image_rp_bucket.size(1)
rp_bucket = self.image_rp_bucket.unsqueeze(0).expand(
bsz, rp_bucket_size, rp_bucket_size
).gather(1, image_position_ids[:, :, None].expand(bsz, seq_len, rp_bucket_size)
).gather(2, image_position_ids[:, None, :].expand(bsz, seq_len, seq_len))
values = F.embedding(rp_bucket, self.image_rel_pos_table_list[idx].weight)
values = values.permute(0, 3, 1, 2)
return values
def get_patch_images_info(self, patch_images, sample_patch_num, device):
image_embed = self.embed_images(patch_images)
h, w = image_embed.shape[-2:]
image_num_patches = h * w
image_padding_mask = patch_images.new_zeros((patch_images.size(0), image_num_patches)).bool()
image_position_idx = torch.arange(w).unsqueeze(0).expand(h, w) + \
torch.arange(h).unsqueeze(1) * self.args.image_bucket_size + 1
image_position_idx = image_position_idx.view(-1).to(device)
image_position_ids = image_position_idx[None, :].expand(patch_images.size(0), image_num_patches)
image_embed = image_embed.flatten(2).transpose(1, 2)
if sample_patch_num is not None:
patch_orders = [
random.sample(range(image_num_patches), k=sample_patch_num)
for _ in range(patch_images.size(0))
]
patch_orders = torch.LongTensor(patch_orders).to(device)
image_embed = image_embed.gather(
1, patch_orders.unsqueeze(2).expand(-1, -1, image_embed.size(2))
)
image_num_patches = sample_patch_num
image_padding_mask = image_padding_mask.gather(1, patch_orders)
image_position_ids = image_position_ids.gather(1, patch_orders)
image_pos_embed = self.embed_image_positions(image_position_ids)
return image_embed, image_num_patches, image_padding_mask, image_position_ids, image_pos_embed
def forward_embedding(
self,
src_tokens,
image_embed: Optional[torch.Tensor] = None,
image_embed_2: Optional[torch.Tensor] = None,
token_embedding: Optional[torch.Tensor] = None,
pos_embed: Optional[torch.Tensor] = None,
image_pos_embed: Optional[torch.Tensor] = None,
image_pos_embed_2: Optional[torch.Tensor] = None
):
# embed tokens and positions
if token_embedding is None:
token_embedding = self.embed_tokens(src_tokens)
x = embed = self.embed_scale * token_embedding
if self.entangle_position_embedding and pos_embed is not None:
x += pos_embed
if self.type_embedding is not None:
x += self.type_embedding(src_tokens.new_zeros(x.size()[:2]))
if self.layernorm_embedding is not None:
x = self.layernorm_embedding(x)
x = self.dropout_module(x)
if self.quant_noise is not None:
x = self.quant_noise(x)
# embed raw images
if image_embed is not None:
image_embed = self.image_proj(image_embed)
image_x = image_embed = self.embed_scale * image_embed
if self.entangle_position_embedding and image_pos_embed is not None:
image_x += image_pos_embed
if self.type_embedding is not None:
image_x += self.type_embedding(src_tokens.new_ones(image_x.size()[:2]))
if self.patch_layernorm_embedding is not None:
image_x = self.patch_layernorm_embedding(image_x)
image_x = self.dropout_module(image_x)
if self.quant_noise is not None:
image_x = self.quant_noise(image_x)
x = torch.cat([image_x, x], dim=1)
embed = torch.cat([image_embed, embed], dim=1)
if image_embed_2 is not None:
assert self.type_embedding is not None
image_embed_2 = self.image_proj(image_embed_2)
image_x_2 = image_embed_2 = self.embed_scale * image_embed_2
if self.entangle_position_embedding and image_pos_embed_2 is not None:
image_x_2 += image_pos_embed_2
if self.type_embedding is not None:
image_x_2 += self.type_embedding(src_tokens.new_full(image_x_2.size()[:2], fill_value=2))
if self.patch_layernorm_embedding is not None:
image_x_2 = self.patch_layernorm_embedding(image_x_2)
image_x_2 = self.dropout_module(image_x_2)
if self.quant_noise is not None:
image_x_2 = self.quant_noise(image_x_2)
x = torch.cat([image_x_2, x], dim=1)
embed = torch.cat([image_embed_2, embed], dim=1)
return x, embed
def forward(
self,
src_tokens,
src_lengths,
patch_images: Optional[torch.Tensor] = None,
patch_images_2: Optional[torch.Tensor] = None,
patch_masks: Optional[torch.Tensor] = None,
code_masks: Optional[torch.Tensor] = None,
return_all_hiddens: bool = False,
token_embeddings: Optional[torch.Tensor] = None,
sample_patch_num: Optional[int] = None
):
"""
Args:
src_tokens (LongTensor): tokens in the source language of shape
`(batch, src_len)`
src_lengths (torch.LongTensor): lengths of each source sentence of
shape `(batch)`
return_all_hiddens (bool, optional): also return all of the
intermediate hidden states (default: False).
token_embeddings (torch.Tensor, optional): precomputed embeddings
default `None` will recompute embeddings
Returns:
dict:
- **encoder_out** (Tensor): the last encoder layer's output of
shape `(src_len, batch, embed_dim)`
- **encoder_padding_mask** (ByteTensor): the positions of
padding elements of shape `(batch, src_len)`
- **encoder_embedding** (Tensor): the (scaled) embedding lookup
of shape `(batch, src_len, embed_dim)`
- **encoder_states** (List[Tensor]): all intermediate
hidden states of shape `(src_len, batch, embed_dim)`.
Only populated if *return_all_hiddens* is True.
"""
return self.forward_scriptable(src_tokens,
src_lengths,
patch_images,
patch_images_2,
patch_masks,
return_all_hiddens,
token_embeddings,
sample_patch_num)
# TorchScript doesn't support super() method so that the scriptable Subclass
# can't access the base class model in Torchscript.
# Current workaround is to add a helper function with different name and
# call the helper function from scriptable Subclass.
def forward_scriptable(
self,
src_tokens,
src_lengths,
patch_images: Optional[torch.Tensor] = None,
patch_images_2: Optional[torch.Tensor] = None,
patch_masks: Optional[torch.Tensor] = None,
return_all_hiddens: bool = False,
token_embeddings: Optional[torch.Tensor] = None,
sample_patch_num: Optional[int] = None
):
"""
Args:
src_tokens (LongTensor): tokens in the source language of shape
`(batch, src_len)`
src_lengths (torch.LongTensor): lengths of each source sentence of
shape `(batch)`
return_all_hiddens (bool, optional): also return all of the
intermediate hidden states (default: False).
token_embeddings (torch.Tensor, optional): precomputed embeddings
default `None` will recompute embeddings
Returns:
dict:
- **encoder_out** (Tensor): the last encoder layer's output of
shape `(src_len, batch, embed_dim)`
- **encoder_padding_mask** (ByteTensor): the positions of
padding elements of shape `(batch, src_len)`
- **encoder_embedding** (Tensor): the (scaled) embedding lookup
of shape `(batch, src_len, embed_dim)`
- **encoder_states** (List[Tensor]): all intermediate
hidden states of shape `(src_len, batch, embed_dim)`.
Only populated if *return_all_hiddens* is True.
"""
image_embed = None
image_embed_2 = None
image_pos_embed = None
image_pos_embed_2 = None
if patch_images is not None:
image_embed, image_num_patches, image_padding_mask, image_position_ids, image_pos_embed = \
self.get_patch_images_info(patch_images, sample_patch_num, src_tokens.device)
image_padding_mask[~patch_masks] = True
if patch_images_2 is not None:
image_embed_2, image_num_patches_2, image_padding_mask_2, image_position_ids_2, image_pos_embed_2 = \
self.get_patch_images_info(patch_images_2, sample_patch_num, src_tokens.device)
image_padding_mask_2[~patch_masks] = True
encoder_padding_mask = src_tokens.eq(self.padding_idx)
if patch_images is not None:
encoder_padding_mask = torch.cat([image_padding_mask, encoder_padding_mask], dim=1)
if patch_images_2 is not None:
encoder_padding_mask = torch.cat([image_padding_mask_2, encoder_padding_mask], dim=1)
has_pads = (src_tokens.device.type == "xla" or encoder_padding_mask.any())
pos_embed = self.embed_positions(utils.new_arange(src_tokens))
x, encoder_embedding = self.forward_embedding(
src_tokens, image_embed, image_embed_2, token_embeddings,
pos_embed, image_pos_embed, image_pos_embed_2
)
# account for padding while computing the representation
if has_pads:
x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x))
# B x T x C -> T x B x C
x = x.transpose(0, 1)
pos_embed = self.pos_ln(pos_embed)
if patch_images is not None:
image_pos_embed = self.image_pos_ln(image_pos_embed)
pos_embed = torch.cat([image_pos_embed, pos_embed], dim=1)
if patch_images_2 is not None:
image_pos_embed_2 = self.image_pos_ln(image_pos_embed_2)
pos_embed = torch.cat([image_pos_embed_2, pos_embed], dim=1)
pos_q = self.pos_q_linear(pos_embed).view(
x.size(1), x.size(0), self.num_attention_heads, -1
).transpose(1, 2) * self.pos_scaling
pos_k = self.pos_k_linear(pos_embed).view(
x.size(1), x.size(0), self.num_attention_heads, -1
).transpose(1, 2)
abs_pos_bias = torch.matmul(pos_q, pos_k.transpose(2, 3))
encoder_states = []
if return_all_hiddens:
encoder_states.append(x)
# encoder layers
for idx, layer in enumerate(self.layers):
self_attn_bias = abs_pos_bias.clone()
self_attn_bias[:, :, -src_tokens.size(1):, -src_tokens.size(1):] += self.get_rel_pos_bias(src_tokens, idx)
if patch_images_2 is not None:
self_attn_bias[:, :, :image_num_patches_2, :image_num_patches_2] += \
self.get_image_rel_pos_bias(image_position_ids_2, idx)
self_attn_bias[:, :, image_num_patches_2:image_num_patches_2+image_num_patches, image_num_patches_2:image_num_patches_2+image_num_patches] += \
self.get_image_rel_pos_bias(image_position_ids, idx)
elif patch_images is not None:
self_attn_bias[:, :, :x.size(0) - src_tokens.size(1), :x.size(0) - src_tokens.size(1)] += \
self.get_image_rel_pos_bias(image_position_ids, idx)
self_attn_bias = self_attn_bias.reshape(-1, x.size(0), x.size(0))
x = layer(
x, encoder_padding_mask=encoder_padding_mask if has_pads else None, self_attn_bias=self_attn_bias
)
if return_all_hiddens:
assert encoder_states is not None
encoder_states.append(x)
if self.layer_norm is not None:
x = self.layer_norm(x)
# The Pytorch Mobile lite interpreter does not supports returning NamedTuple in
# `forward` so we use a dictionary instead.
# TorchScript does not support mixed values so the values are all lists.
# The empty list is equivalent to None.
return {
"encoder_out": [x], # T x B x C
"encoder_padding_mask": [encoder_padding_mask], # B x T
"encoder_embedding": [], # B x T x C
"encoder_states": encoder_states, # List[T x B x C]
"src_tokens": [],
"src_lengths": [],
"position_embeddings": [pos_embed], # B x T x C
}
@torch.jit.export
def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order):
"""
Reorder encoder output according to *new_order*.
Args:
encoder_out: output from the ``forward()`` method
new_order (LongTensor): desired order
Returns:
*encoder_out* rearranged according to *new_order*
"""
if len(encoder_out["encoder_out"]) == 0:
new_encoder_out = []
else:
new_encoder_out = [encoder_out["encoder_out"][0].index_select(1, new_order)]
if len(encoder_out["encoder_padding_mask"]) == 0:
new_encoder_padding_mask = []
else:
new_encoder_padding_mask = [
encoder_out["encoder_padding_mask"][0].index_select(0, new_order)
]
if len(encoder_out["encoder_embedding"]) == 0:
new_encoder_embedding = []
else:
new_encoder_embedding = [
encoder_out["encoder_embedding"][0].index_select(0, new_order)
]
if len(encoder_out["src_tokens"]) == 0:
new_src_tokens = []
else:
new_src_tokens = [(encoder_out["src_tokens"][0]).index_select(0, new_order)]
if len(encoder_out["src_lengths"]) == 0:
new_src_lengths = []
else:
new_src_lengths = [(encoder_out["src_lengths"][0]).index_select(0, new_order)]
if len(encoder_out["position_embeddings"]) == 0:
new_position_embeddings = []
else:
new_position_embeddings = [(encoder_out["position_embeddings"][0]).index_select(0, new_order)]
encoder_states = encoder_out["encoder_states"]
if len(encoder_states) > 0:
for idx, state in enumerate(encoder_states):
encoder_states[idx] = state.index_select(1, new_order)
return {
"encoder_out": new_encoder_out, # T x B x C
"encoder_padding_mask": new_encoder_padding_mask, # B x T
"encoder_embedding": new_encoder_embedding, # B x T x C
"encoder_states": encoder_states, # List[T x B x C]
"src_tokens": new_src_tokens, # B x T
"src_lengths": new_src_lengths, # B x 1
"position_embeddings": new_position_embeddings, # B x T x C
}
def max_positions(self):
"""Maximum input length supported by the encoder."""
if self.embed_positions is None:
return self.max_source_positions
return self.max_source_positions
def upgrade_state_dict_named(self, state_dict, name):
"""Upgrade a (possibly old) state dict for new versions of fairseq."""
if isinstance(self.embed_positions, SinusoidalPositionalEmbedding):
weights_key = "{}.embed_positions.weights".format(name)
if weights_key in state_dict:
print("deleting {0}".format(weights_key))
del state_dict[weights_key]
state_dict[
"{}.embed_positions._float_tensor".format(name)
] = torch.FloatTensor(1)
for i in range(self.num_layers):
# update layer norms
self.layers[i].upgrade_state_dict_named(
state_dict, "{}.layers.{}".format(name, i)
)
# version_key = "{}.version".format(name)
# if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2:
# # earlier checkpoints did not normalize after the stack of layers
# self.layer_norm = None
# self.normalize = False
# state_dict[version_key] = torch.Tensor([1])
prefix = name + "." if name != "" else ""
for param_name, param_tensor in self.state_dict().items():
if (prefix + param_name) not in state_dict and param_name in self.state_dict():
state_dict[prefix + param_name] = self.state_dict()[param_name]
if len(state_dict["encoder.embed_image_positions.weight"]) < len(self.state_dict()["embed_image_positions.weight"]):
num_posids_to_add = len(self.state_dict()["embed_image_positions.weight"]) - len(state_dict["encoder.embed_image_positions.weight"])
embed_dim = state_dict["encoder.embed_image_positions.weight"].size(1)
new_pos_embed_to_add = torch.zeros(num_posids_to_add, embed_dim)
nn.init.normal_(new_pos_embed_to_add, mean=0, std=embed_dim ** -0.5)
new_pos_embed_to_add = new_pos_embed_to_add.to(
dtype=state_dict["encoder.embed_image_positions.weight"].dtype,
)
state_dict["encoder.embed_image_positions.weight"] = torch.cat(
[state_dict["encoder.embed_image_positions.weight"], new_pos_embed_to_add]
)
return state_dict
class TransformerDecoder(FairseqIncrementalDecoder):
"""
Transformer decoder consisting of *args.decoder_layers* layers. Each layer
is a :class:`TransformerDecoderLayer`.
Args:
args (argparse.Namespace): parsed command-line arguments
dictionary (~fairseq.data.Dictionary): decoding dictionary
embed_tokens (torch.nn.Embedding): output embedding
no_encoder_attn (bool, optional): whether to attend to encoder outputs
(default: False).
"""
def __init__(
self,
args,
dictionary,
embed_tokens,
no_encoder_attn=False,
output_projection=None,
):
self.args = args
super().__init__(dictionary)
self.register_buffer("version", torch.Tensor([3]))
self._future_mask = torch.empty(0)
self.dropout_module = FairseqDropout(
args.dropout, module_name=self.__class__.__name__
)
self.decoder_layerdrop = args.decoder_layerdrop
self.share_input_output_embed = args.share_decoder_input_output_embed
self.num_attention_heads = args.decoder_attention_heads
input_embed_dim = embed_tokens.embedding_dim
embed_dim = args.decoder_embed_dim
self.embed_dim = embed_dim
self.output_embed_dim = args.decoder_output_dim
self.padding_idx = embed_tokens.padding_idx
self.max_target_positions = args.max_target_positions
self.embed_tokens = embed_tokens
self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim)
if not args.adaptive_input and args.quant_noise_pq > 0:
self.quant_noise = apply_quant_noise_(
nn.Linear(embed_dim, embed_dim, bias=False),
args.quant_noise_pq,
args.quant_noise_pq_block_size,
)
else:
self.quant_noise = None
self.project_in_dim = (
Linear(input_embed_dim, embed_dim, bias=False)
if embed_dim != input_embed_dim
else None
)
if getattr(args, "layernorm_embedding", False):
self.layernorm_embedding = LayerNorm(embed_dim)
else:
self.layernorm_embedding = None
self.window_size = args.code_image_size // 8
self.embed_positions = Embedding(args.max_target_positions + 2, embed_dim)
self.embed_image_positions = Embedding(args.image_bucket_size ** 2 + 1, embed_dim)
self.pos_ln = LayerNorm(embed_dim)
self.image_pos_ln = LayerNorm(embed_dim)
self.pos_scaling = float(embed_dim / self.num_attention_heads * args.attn_scale_factor) ** -0.5
self.self_pos_q_linear = nn.Linear(embed_dim, embed_dim)
self.self_pos_k_linear = nn.Linear(embed_dim, embed_dim)
self.cross_pos_q_linear = nn.Linear(embed_dim, embed_dim)
self.cross_pos_k_linear = nn.Linear(embed_dim, embed_dim)
if getattr(args, "code_layernorm_embedding", False):
self.code_layernorm_embedding = LayerNorm(embed_dim)
else:
self.code_layernorm_embedding = None
self.cross_self_attention = getattr(args, "cross_self_attention", False)
if self.decoder_layerdrop > 0.0:
self.layers = LayerDropModuleList(p=self.decoder_layerdrop)
else:
self.layers = nn.ModuleList([])
dpr = [x.item() for x in torch.linspace(0, args.decoder_drop_path_rate, args.decoder_layers)]
self.layers.extend(
[
self.build_decoder_layer(args, no_encoder_attn, drop_path_rate=dpr[i])
for i in range(args.decoder_layers)
]
)
self.num_layers = len(self.layers)
if args.decoder_normalize_before:
self.layer_norm = LayerNorm(embed_dim)
else:
self.layer_norm = None
self.project_out_dim = (
Linear(embed_dim, self.output_embed_dim, bias=False)
if embed_dim != self.output_embed_dim and not args.tie_adaptive_weights
else None
)
self.adaptive_softmax = None
self.output_projection = output_projection
if self.output_projection is None:
self.build_output_projection(args, dictionary, embed_tokens)
token_bucket_size = args.token_bucket_size
token_num_rel_dis = 2 * token_bucket_size - 1
token_rp_bucket = make_token_bucket_position(token_bucket_size)
self.token_rel_pos_table_list = nn.ModuleList(
[Embedding(token_num_rel_dis, self.num_attention_heads, zero_init=True) for _ in range(args.decoder_layers)]
)
image_bucket_size = args.image_bucket_size
image_num_rel_dis = (2 * image_bucket_size - 1) * (2 * image_bucket_size - 1) + 3
image_rp_bucket = make_image_bucket_position(image_bucket_size, image_num_rel_dis)
image_position_idx = torch.arange(self.window_size).unsqueeze(0).expand(self.window_size, self.window_size) + \
torch.arange(self.window_size).unsqueeze(1) * image_bucket_size + 1
image_position_idx = torch.cat([torch.tensor([0]), image_position_idx.view(-1)])
image_position_idx = torch.cat([image_position_idx, torch.tensor([1024] * 768)])
self.image_rel_pos_table_list = nn.ModuleList(
[Embedding(image_num_rel_dis, self.num_attention_heads, zero_init=True) for _ in range(args.decoder_layers)]
)
self.register_buffer("token_rp_bucket", token_rp_bucket)
self.register_buffer("image_rp_bucket", image_rp_bucket)
self.register_buffer("image_position_idx", image_position_idx)
self.entangle_position_embedding = args.entangle_position_embedding
def build_output_projection(self, args, dictionary, embed_tokens):
if args.adaptive_softmax_cutoff is not None:
self.adaptive_softmax = AdaptiveSoftmax(
len(dictionary),
self.output_embed_dim,
utils.eval_str_list(args.adaptive_softmax_cutoff, type=int),
dropout=args.adaptive_softmax_dropout,
adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None,
factor=args.adaptive_softmax_factor,
tie_proj=args.tie_adaptive_proj,
)
elif self.share_input_output_embed:
self.output_projection = nn.Linear(
self.embed_tokens.weight.shape[1],
self.embed_tokens.weight.shape[0],
bias=False,
)
self.output_projection.weight = self.embed_tokens.weight
else:
self.output_projection = nn.Linear(
self.output_embed_dim, len(dictionary), bias=False
)
nn.init.normal_(
self.output_projection.weight, mean=0, std=self.output_embed_dim ** -0.5
)
num_base_layers = getattr(args, "base_layers", 0)
for i in range(num_base_layers):
self.layers.insert(((i+1) * args.decoder_layers) // (num_base_layers + 1), BaseLayer(args))
def build_decoder_layer(self, args, no_encoder_attn=False, drop_path_rate=0.0):
layer = TransformerDecoderLayer(args, no_encoder_attn, drop_path_rate=drop_path_rate)
checkpoint = getattr(args, "checkpoint_activations", False)
if checkpoint:
offload_to_cpu = getattr(args, "offload_activations", False)
layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu)
# if we are checkpointing, enforce that FSDP always wraps the
# checkpointed layer, regardless of layer size
min_params_to_wrap = (
getattr(args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP)
if not checkpoint else 0
)
layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap)
return layer
def get_rel_pos_bias(self, x, idx):
seq_len = x.size(1)
rp_bucket = self.token_rp_bucket[:seq_len, :seq_len]
values = F.embedding(rp_bucket, self.token_rel_pos_table_list[idx].weight)
values = values.permute([2, 0, 1])
return values.contiguous()
def get_image_rel_pos_bias(self, x, idx):
seq_len = x.size(1)
image_position_idx = self.image_position_idx[:seq_len]
rp_bucket = self.image_rp_bucket[image_position_idx][:, image_position_idx]
values = F.embedding(rp_bucket, self.image_rel_pos_table_list[idx].weight)
values = values.permute(2, 0, 1)
return values
def get_pos_info(self, tokens, tgt_pos_embed, src_pos_embed=None, use_image=False):
batch_size = tokens.size(0)
tgt_len = tokens.size(1)
tgt_pos_embed = self.image_pos_ln(tgt_pos_embed) if use_image else self.pos_ln(tgt_pos_embed)
if src_pos_embed is not None:
src_len = src_pos_embed.size(1)
pos_q = self.cross_pos_q_linear(tgt_pos_embed).view(
batch_size, tgt_len, self.num_attention_heads, -1
).transpose(1, 2) * self.pos_scaling
pos_k = self.cross_pos_k_linear(src_pos_embed).view(
batch_size, src_len, self.num_attention_heads, -1
).transpose(1, 2)
else:
src_len = tgt_pos_embed.size(1)
pos_q = self.self_pos_q_linear(tgt_pos_embed).view(
batch_size, tgt_len, self.num_attention_heads, -1
).transpose(1, 2) * self.pos_scaling
pos_k = self.self_pos_k_linear(tgt_pos_embed).view(
batch_size, src_len, self.num_attention_heads, -1
).transpose(1, 2)
abs_pos_bias = torch.matmul(pos_q, pos_k.transpose(2, 3))
return abs_pos_bias
def forward(
self,
prev_output_tokens,
code_masks: Optional[torch.Tensor] = None,
encoder_out: Optional[Dict[str, List[Tensor]]] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
features_only: bool = False,
full_context_alignment: bool = False,
alignment_layer: Optional[int] = None,
alignment_heads: Optional[int] = None,
src_lengths: Optional[Any] = None,
return_all_hiddens: bool = False,
):
"""
Args:
prev_output_tokens (LongTensor): previous decoder outputs of shape
`(batch, tgt_len)`, for teacher forcing
encoder_out (optional): output from the encoder, used for
encoder-side attention, should be of size T x B x C
incremental_state (dict): dictionary used for storing state during
:ref:`Incremental decoding`
features_only (bool, optional): only return features without
applying output layer (default: False).
full_context_alignment (bool, optional): don't apply
auto-regressive mask to self-attention (default: False).
Returns:
tuple:
- the decoder's output of shape `(batch, tgt_len, vocab)`
- a dictionary with any model-specific outputs
"""
x, extra = self.extract_features(
prev_output_tokens,
code_masks=code_masks,
encoder_out=encoder_out,
incremental_state=incremental_state,
full_context_alignment=full_context_alignment,
alignment_layer=alignment_layer,
alignment_heads=alignment_heads,
)
if not features_only:
x = self.output_layer(x)
return x, extra
def extract_features(
self,
prev_output_tokens,
code_masks: Optional[torch.Tensor],
encoder_out: Optional[Dict[str, List[Tensor]]],
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
full_context_alignment: bool = False,
alignment_layer: Optional[int] = None,
alignment_heads: Optional[int] = None,
):
return self.extract_features_scriptable(
prev_output_tokens,
code_masks,
encoder_out,
incremental_state,
full_context_alignment,
alignment_layer,
alignment_heads,
)
"""
A scriptable subclass of this class has an extract_features method and calls
super().extract_features, but super() is not supported in torchscript. A copy of
this function is made to be used in the subclass instead.
"""
def extract_features_scriptable(
self,
prev_output_tokens,
code_masks: Optional[torch.Tensor],
encoder_out: Optional[Dict[str, List[Tensor]]],
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
full_context_alignment: bool = False,
alignment_layer: Optional[int] = None,
alignment_heads: Optional[int] = None,
):
"""
Similar to *forward* but only return features.
Includes several features from "Jointly Learning to Align and
Translate with Transformer Models" (Garg et al., EMNLP 2019).
Args:
full_context_alignment (bool, optional): don't apply
auto-regressive mask to self-attention (default: False).
alignment_layer (int, optional): return mean alignment over
heads at this layer (default: last layer).
alignment_heads (int, optional): only average alignment over
this many heads (default: all heads).
Returns:
tuple:
- the decoder's features of shape `(batch, tgt_len, embed_dim)`
- a dictionary with any model-specific outputs
"""
bs, slen = prev_output_tokens.size()
if alignment_layer is None:
alignment_layer = self.num_layers - 1
enc: Optional[Tensor] = None
padding_mask: Optional[Tensor] = None
if encoder_out is not None and len(encoder_out["encoder_out"]) > 0:
enc = encoder_out["encoder_out"][0]
assert (
enc.size()[1] == bs
), f"Expected enc.shape == (t, {bs}, c) got {enc.shape}"
if encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0:
padding_mask = encoder_out["encoder_padding_mask"][0]
bsz, tgt_len = prev_output_tokens.shape
token_position_idx = utils.new_arange(prev_output_tokens)
tgt_pos_embed = self.embed_positions(token_position_idx)
if code_masks is not None and torch.any(code_masks):
image_position_idx = self.image_position_idx[:prev_output_tokens.size(1)].unsqueeze(0).expand(bsz, tgt_len)
tgt_pos_embed[code_masks] = self.embed_image_positions(image_position_idx)[code_masks]
# self attn position bias
self_abs_pos_bias = self.get_pos_info(prev_output_tokens, tgt_pos_embed, use_image=False)
if code_masks is not None and torch.any(code_masks):
self_image_abs_pos_bias = self.get_pos_info(prev_output_tokens, tgt_pos_embed, use_image=True)
self_abs_pos_bias[code_masks] = self_image_abs_pos_bias[code_masks]
# cross attn position bias
src_pos_embed = encoder_out['position_embeddings'][0]
cross_abs_pos_bias = self.get_pos_info(prev_output_tokens, tgt_pos_embed, src_pos_embed=src_pos_embed)
if code_masks is not None and torch.any(code_masks):
cross_image_abs_pos_bias = self.get_pos_info(prev_output_tokens, tgt_pos_embed, src_pos_embed=src_pos_embed, use_image=True)
cross_abs_pos_bias[code_masks] = cross_image_abs_pos_bias[code_masks]
cross_abs_pos_bias = cross_abs_pos_bias.reshape(-1, *cross_abs_pos_bias.size()[-2:])
all_prev_output_tokens = prev_output_tokens.clone()
if incremental_state is not None:
prev_output_tokens = prev_output_tokens[:, -1:]
cross_abs_pos_bias = cross_abs_pos_bias[:, -1:, :]
tgt_pos_embed = tgt_pos_embed[:, -1:, :]
# embed tokens and positions
x = self.embed_scale * self.embed_tokens(prev_output_tokens)
if self.quant_noise is not None:
x = self.quant_noise(x)
if self.project_in_dim is not None:
x = self.project_in_dim(x)
if self.entangle_position_embedding is not None and not self.args.disable_entangle:
x += tgt_pos_embed
if self.layernorm_embedding is not None:
if code_masks is None or not code_masks.any() or not getattr(self, "code_layernorm_embedding", False):
x = self.layernorm_embedding(x)
elif code_masks is not None and code_masks.all():
x = self.code_layernorm_embedding(x)
else:
x[~code_masks] = self.layernorm_embedding(x[~code_masks])
x[code_masks] = self.code_layernorm_embedding(x[code_masks])
x = self.dropout_module(x)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
self_attn_padding_mask: Optional[Tensor] = None
if self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any():
self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx)
# decoder layers
attn: Optional[Tensor] = None
inner_states: List[Optional[Tensor]] = [x]
for idx, layer in enumerate(self.layers):
if incremental_state is None and not full_context_alignment:
self_attn_mask = self.buffered_future_mask(x)
else:
self_attn_mask = None
self_attn_bias = self_abs_pos_bias.clone()
if code_masks is None or not code_masks.any():
self_attn_bias += self.get_rel_pos_bias(all_prev_output_tokens, idx).unsqueeze(0)
elif code_masks is not None and code_masks.all():
self_attn_bias += self.get_image_rel_pos_bias(all_prev_output_tokens, idx).unsqueeze(0)
else:
self_attn_bias[~code_masks] += self.get_rel_pos_bias(all_prev_output_tokens, idx).unsqueeze(0)
self_attn_bias[code_masks] += self.get_image_rel_pos_bias(all_prev_output_tokens, idx).unsqueeze(0)
self_attn_bias = self_attn_bias.reshape(-1, *self_attn_bias.size()[-2:])
if incremental_state is not None:
self_attn_bias = self_attn_bias[:, -1:, :]
x, layer_attn, _ = layer(
x,
enc,
padding_mask,
incremental_state,
self_attn_mask=self_attn_mask,
self_attn_padding_mask=self_attn_padding_mask,
need_attn=bool((idx == alignment_layer)),
need_head_weights=bool((idx == alignment_layer)),
self_attn_bias=self_attn_bias,
cross_attn_bias=cross_abs_pos_bias
)
inner_states.append(x)
if layer_attn is not None and idx == alignment_layer:
attn = layer_attn.float().to(x)
if attn is not None:
if alignment_heads is not None:
attn = attn[:alignment_heads]
# average probabilities over heads
attn = attn.mean(dim=0)
if self.layer_norm is not None:
x = self.layer_norm(x)
# T x B x C -> B x T x C
x = x.transpose(0, 1)
if self.project_out_dim is not None:
x = self.project_out_dim(x)
return x, {"attn": [attn], "inner_states": inner_states}
def output_layer(self, features):
"""Project features to the vocabulary size."""
if self.adaptive_softmax is None:
# project back to size of vocabulary
return self.output_projection(features)
else:
return features
def max_positions(self):
"""Maximum output length supported by the decoder."""
if self.embed_positions is None:
return self.max_target_positions
return self.max_target_positions
def buffered_future_mask(self, tensor):
dim = tensor.size(0)
# self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround.
if (
self._future_mask.size(0) == 0
or (not self._future_mask.device == tensor.device)
or self._future_mask.size(0) < dim
):
self._future_mask = torch.triu(
utils.fill_with_neg_inf(torch.zeros([dim, dim])), 1
)
self._future_mask = self._future_mask.to(tensor)
return self._future_mask[:dim, :dim]
def upgrade_state_dict_named(self, state_dict, name):
"""Upgrade a (possibly old) state dict for new versions of fairseq."""
if isinstance(self.embed_positions, SinusoidalPositionalEmbedding):
weights_key = "{}.embed_positions.weights".format(name)
if weights_key in state_dict:
del state_dict[weights_key]
state_dict[
"{}.embed_positions._float_tensor".format(name)
] = torch.FloatTensor(1)
if f"{name}.output_projection.weight" not in state_dict:
if self.share_input_output_embed:
embed_out_key = f"{name}.embed_tokens.weight"
else:
embed_out_key = f"{name}.embed_out"
if embed_out_key in state_dict:
state_dict[f"{name}.output_projection.weight"] = state_dict[
embed_out_key
]
if not self.share_input_output_embed:
del state_dict[embed_out_key]
for i in range(self.num_layers):
# update layer norms
self.layers[i].upgrade_state_dict_named(
state_dict, "{}.layers.{}".format(name, i)
)
# version_key = "{}.version".format(name)
# if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) <= 2:
# # earlier checkpoints did not normalize after the stack of layers
# self.layer_norm = None
# self.normalize = False
# state_dict[version_key] = torch.Tensor([1])
prefix = name + "." if name != "" else ""
image_params = ["image_position_idx"]
for image_param in image_params:
state_dict[prefix + image_param] = self.state_dict()[image_param]
for param_name, param_tensor in self.state_dict().items():
if (prefix + param_name) not in state_dict and param_name in self.state_dict():
state_dict[prefix + param_name] = self.state_dict()[param_name]
if len(state_dict["decoder.embed_image_positions.weight"]) < len(self.state_dict()["embed_image_positions.weight"]):
num_posids_to_add = len(self.state_dict()["embed_image_positions.weight"]) - len(state_dict["decoder.embed_image_positions.weight"])
embed_dim = state_dict["decoder.embed_image_positions.weight"].size(1)
new_pos_embed_to_add = torch.zeros(num_posids_to_add, embed_dim)
nn.init.normal_(new_pos_embed_to_add, mean=0, std=embed_dim ** -0.5)
new_pos_embed_to_add = new_pos_embed_to_add.to(
dtype=state_dict["decoder.embed_image_positions.weight"].dtype,
)
state_dict["decoder.embed_image_positions.weight"] = torch.cat(
[state_dict["decoder.embed_image_positions.weight"], new_pos_embed_to_add]
)
return state_dict
def Embedding(num_embeddings, embedding_dim, padding_idx=None, zero_init=False):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
if padding_idx is not None:
nn.init.constant_(m.weight[padding_idx], 0)
if zero_init:
nn.init.constant_(m.weight, 0)
return m
def Linear(in_features, out_features, bias=True):
m = nn.Linear(in_features, out_features, bias)
nn.init.xavier_uniform_(m.weight)
if bias:
nn.init.constant_(m.bias, 0.0)
return m
@register_model_architecture("unify_transformer", "unify_transformer")
def base_architecture(args):
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
args.encoder_layers = getattr(args, "encoder_layers", 6)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
args.decoder_ffn_embed_dim = getattr(
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.activation_dropout = getattr(args, "activation_dropout", 0.0)
args.activation_fn = getattr(args, "activation_fn", "relu")
args.dropout = getattr(args, "dropout", 0.1)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.adaptive_input = getattr(args, "adaptive_input", False)
args.no_cross_attention = getattr(args, "no_cross_attention", False)
args.cross_self_attention = getattr(args, "cross_self_attention", False)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
args.layernorm_embedding = getattr(args, "layernorm_embedding", False)
args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False)
args.checkpoint_activations = getattr(args, "checkpoint_activations", False)
args.offload_activations = getattr(args, "offload_activations", False)
if args.offload_activations:
args.checkpoint_activations = True
args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None)
args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None)
args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0)
args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0)
args.quant_noise_pq = getattr(args, "quant_noise_pq", 0)
args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8)
args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0) |