File size: 71,135 Bytes
75ba0e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math
import random
from typing import Any, Dict, List, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.distributed import fsdp_wrap
from fairseq.models import (
    FairseqEncoder,
    FairseqEncoderDecoderModel,
    FairseqIncrementalDecoder,
    register_model,
    register_model_architecture,
)
from fairseq.modules import (
    AdaptiveSoftmax,
    BaseLayer,
    FairseqDropout,
    LayerDropModuleList,
    LayerNorm,
    SinusoidalPositionalEmbedding,
    GradMultiply
)
from fairseq.modules.checkpoint_activations import checkpoint_wrapper
from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_
from torch import Tensor

from .unify_transformer_layer import TransformerEncoderLayer, TransformerDecoderLayer
from .resnet import ResNet


DEFAULT_MAX_SOURCE_POSITIONS = 1024
DEFAULT_MAX_TARGET_POSITIONS = 1024


DEFAULT_MIN_PARAMS_TO_WRAP = int(1e8)


def BatchNorm2d(out_chan, momentum=0.1, eps=1e-3):
    return nn.SyncBatchNorm.convert_sync_batchnorm(
        nn.BatchNorm2d(out_chan, momentum=momentum, eps=eps)
    )


def make_token_bucket_position(bucket_size, max_position=DEFAULT_MAX_SOURCE_POSITIONS):
    context_pos = torch.arange(max_position, dtype=torch.long)[:, None]
    memory_pos = torch.arange(max_position, dtype=torch.long)[None, :]
    relative_pos = context_pos - memory_pos
    sign = torch.sign(relative_pos)
    mid = bucket_size // 2
    abs_pos = torch.where((relative_pos<mid) & (relative_pos > -mid), mid-1, torch.abs(relative_pos))
    log_pos = torch.ceil(torch.log(abs_pos/mid)/math.log((max_position-1)/mid) * (mid-1)) + mid
    log_pos = log_pos.int()
    bucket_pos = torch.where(abs_pos.le(mid), relative_pos, log_pos*sign).long()
    return bucket_pos + bucket_size - 1


def make_image_bucket_position(bucket_size, num_relative_distance):
    coords_h = torch.arange(bucket_size)
    coords_w = torch.arange(bucket_size)
    coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
    coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
    relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
    relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
    relative_coords[:, :, 0] += bucket_size - 1  # shift to start from 0
    relative_coords[:, :, 1] += bucket_size - 1
    relative_coords[:, :, 0] *= 2 * bucket_size - 1
    relative_position_index = torch.zeros(size=(bucket_size * bucket_size + 1,) * 2, dtype=relative_coords.dtype)
    relative_position_index[1:, 1:] = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
    relative_position_index[0, 0:] = num_relative_distance - 3
    relative_position_index[0:, 0] = num_relative_distance - 2
    relative_position_index[0, 0] = num_relative_distance - 1
    return relative_position_index


@register_model("unify_transformer")
class TransformerModel(FairseqEncoderDecoderModel):
    """
    Transformer model from `"Attention Is All You Need" (Vaswani, et al, 2017)
    <https://arxiv.org/abs/1706.03762>`_.

    Args:
        encoder (TransformerEncoder): the encoder
        decoder (TransformerDecoder): the decoder

    The Transformer model provides the following named architectures and
    command-line arguments:

    .. argparse::
        :ref: fairseq.models.transformer_parser
        :prog:
    """

    def __init__(self, args, encoder, decoder):
        super().__init__(encoder, decoder)
        self.args = args
        self.supports_align_args = True

    @staticmethod
    def add_args(parser):
        """Add model-specific arguments to the parser."""
        # fmt: off
        parser.add_argument('--activation-fn',
                            choices=utils.get_available_activation_fns(),
                            help='activation function to use')
        parser.add_argument('--dropout', type=float, metavar='D',
                            help='dropout probability')
        parser.add_argument('--attention-dropout', type=float, metavar='D',
                            help='dropout probability for attention weights')
        parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D',
                            help='dropout probability after activation in FFN.')
        parser.add_argument('--encoder-embed-path', type=str, metavar='STR',
                            help='path to pre-trained encoder embedding')
        parser.add_argument('--encoder-embed-dim', type=int, metavar='N',
                            help='encoder embedding dimension')
        parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N',
                            help='encoder embedding dimension for FFN')
        parser.add_argument('--encoder-layers', type=int, metavar='N',
                            help='num encoder layers')
        parser.add_argument('--encoder-attention-heads', type=int, metavar='N',
                            help='num encoder attention heads')
        parser.add_argument('--encoder-normalize-before', action='store_true',
                            help='apply layernorm before each encoder block')
        parser.add_argument('--encoder-learned-pos', action='store_true',
                            help='use learned positional embeddings in the encoder')
        parser.add_argument('--decoder-embed-path', type=str, metavar='STR',
                            help='path to pre-trained decoder embedding')
        parser.add_argument('--decoder-embed-dim', type=int, metavar='N',
                            help='decoder embedding dimension')
        parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N',
                            help='decoder embedding dimension for FFN')
        parser.add_argument('--decoder-layers', type=int, metavar='N',
                            help='num decoder layers')
        parser.add_argument('--decoder-attention-heads', type=int, metavar='N',
                            help='num decoder attention heads')
        parser.add_argument('--decoder-learned-pos', action='store_true',
                            help='use learned positional embeddings in the decoder')
        parser.add_argument('--decoder-normalize-before', action='store_true',
                            help='apply layernorm before each decoder block')
        parser.add_argument('--decoder-output-dim', type=int, metavar='N',
                            help='decoder output dimension (extra linear layer '
                                 'if different from decoder embed dim')
        parser.add_argument('--share-decoder-input-output-embed', action='store_true',
                            help='share decoder input and output embeddings')
        parser.add_argument('--share-all-embeddings', action='store_true',
                            help='share encoder, decoder and output embeddings'
                                 ' (requires shared dictionary and embed dim)')
        parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true',
                            help='if set, disables positional embeddings (outside self attention)')
        parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR',
                            help='comma separated list of adaptive softmax cutoff points. '
                                 'Must be used with adaptive_loss criterion'),
        parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D',
                            help='sets adaptive softmax dropout for the tail projections')
        parser.add_argument('--layernorm-embedding', action='store_true',
                            help='add layernorm to embedding')
        parser.add_argument('--no-scale-embedding', action='store_true',
                            help='if True, dont scale embeddings')
        parser.add_argument('--checkpoint-activations', action='store_true',
                            help='checkpoint activations at each layer, which saves GPU '
                                 'memory usage at the cost of some additional compute')
        parser.add_argument('--offload-activations', action='store_true',
                            help='checkpoint activations at each layer, then save to gpu. Sets --checkpoint-activations.')
        # args for "Cross+Self-Attention for Transformer Models" (Peitz et al., 2019)
        parser.add_argument('--no-cross-attention', default=False, action='store_true',
                            help='do not perform cross-attention')
        parser.add_argument('--cross-self-attention', default=False, action='store_true',
                            help='perform cross+self-attention')
        # args for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019)
        parser.add_argument('--encoder-layerdrop', type=float, metavar='D', default=0,
                            help='LayerDrop probability for encoder')
        parser.add_argument('--decoder-layerdrop', type=float, metavar='D', default=0,
                            help='LayerDrop probability for decoder')
        parser.add_argument('--encoder-layers-to-keep', default=None,
                            help='which layers to *keep* when pruning as a comma-separated list')
        parser.add_argument('--decoder-layers-to-keep', default=None,
                            help='which layers to *keep* when pruning as a comma-separated list')
        # args for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020)
        parser.add_argument('--quant-noise-pq', type=float, metavar='D', default=0,
                            help='iterative PQ quantization noise at training time')
        parser.add_argument('--quant-noise-pq-block-size', type=int, metavar='D', default=8,
                            help='block size of quantization noise at training time')
        parser.add_argument('--quant-noise-scalar', type=float, metavar='D', default=0,
                            help='scalar quantization noise and scalar quantization at training time')
        # args for Fully Sharded Data Parallel (FSDP) training
        parser.add_argument(
            '--min-params-to-wrap', type=int, metavar='D', default=DEFAULT_MIN_PARAMS_TO_WRAP,
            help=(
                'minimum number of params for a layer to be wrapped with FSDP() when '
                'training with --ddp-backend=fully_sharded. Smaller values will '
                'improve memory efficiency, but may make torch.distributed '
                'communication less efficient due to smaller input sizes. This option '
                'is set to 0 (i.e., always wrap) when --checkpoint-activations or '
                '--offload-activations are passed.'
            )
        )

        parser.add_argument('--resnet-drop-path-rate', type=float,
                            help='resnet drop path rate')
        parser.add_argument('--encoder-drop-path-rate', type=float,
                            help='encoder drop path rate')
        parser.add_argument('--decoder-drop-path-rate', type=float,
                            help='encoder drop path rate')

        parser.add_argument('--token-bucket-size', type=int,
                            help='token bucket size')
        parser.add_argument('--image-bucket-size', type=int,
                            help='image bucket size')

        parser.add_argument('--attn-scale-factor', type=float,
                            help='attention scale factor')
        parser.add_argument('--freeze-resnet', action='store_true',
                            help='freeze resnet')
        parser.add_argument('--freeze-encoder-embedding', action='store_true',
                            help='freeze encoder token embedding')
        parser.add_argument('--freeze-decoder-embedding', action='store_true',
                            help='freeze decoder token embedding')
        parser.add_argument('--add-type-embedding', action='store_true',
                            help='add source/region/patch type embedding')

        parser.add_argument('--resnet-type', choices=['resnet50', 'resnet101', 'resnet152'],
                            help='resnet type')
        parser.add_argument('--resnet-model-path', type=str, metavar='STR',
                            help='path to load resnet')
        parser.add_argument('--code-image-size', type=int,
                            help='code image size')
        parser.add_argument('--patch-layernorm-embedding', action='store_true',
                            help='add layernorm to patch embedding')
        parser.add_argument('--code-layernorm-embedding', action='store_true',
                            help='add layernorm to code embedding')
        parser.add_argument('--entangle-position-embedding', action='store_true',
                            help='entangle position embedding')
        parser.add_argument('--disable-entangle', action='store_true',
                            help='disable entangle')
        parser.add_argument('--sync-bn', action='store_true',
                            help='sync batchnorm')

        parser.add_argument('--scale-attn', action='store_true',
                            help='scale attn')
        parser.add_argument('--scale-fc', action='store_true',
                            help='scale fc')
        parser.add_argument('--scale-heads', action='store_true',
                            help='scale heads')
        parser.add_argument('--scale-resids', action='store_true',
                            help='scale resids')
        # fmt: on

    @classmethod
    def build_model(cls, args, task):
        """Build a new model instance."""

        # make sure all arguments are present in older models
        base_architecture(args)

        if args.encoder_layers_to_keep:
            args.encoder_layers = len(args.encoder_layers_to_keep.split(","))
        if args.decoder_layers_to_keep:
            args.decoder_layers = len(args.decoder_layers_to_keep.split(","))

        if getattr(args, "max_source_positions", None) is None:
            args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS
        if getattr(args, "max_target_positions", None) is None:
            args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS

        src_dict, tgt_dict = task.source_dictionary, task.target_dictionary

        if args.share_all_embeddings:
            if src_dict != tgt_dict:
                raise ValueError("--share-all-embeddings requires a joined dictionary")
            if args.encoder_embed_dim != args.decoder_embed_dim:
                raise ValueError(
                    "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim"
                )
            if args.decoder_embed_path and (
                args.decoder_embed_path != args.encoder_embed_path
            ):
                raise ValueError(
                    "--share-all-embeddings not compatible with --decoder-embed-path"
                )
            encoder_embed_tokens = cls.build_embedding(
                args, src_dict, args.encoder_embed_dim, args.encoder_embed_path
            )
            decoder_embed_tokens = encoder_embed_tokens
            args.share_decoder_input_output_embed = True
        else:
            encoder_embed_tokens = cls.build_embedding(
                args, src_dict, args.encoder_embed_dim, args.encoder_embed_path
            )
            decoder_embed_tokens = cls.build_embedding(
                args, tgt_dict, args.decoder_embed_dim, args.decoder_embed_path
            )
        if getattr(args, "freeze_encoder_embedding", False):
            encoder_embed_tokens.weight.requires_grad = False
        if getattr(args, "freeze_decoder_embedding", False):
            decoder_embed_tokens.weight.requires_grad = False
        if getattr(args, "offload_activations", False):
            args.checkpoint_activations = True  # offloading implies checkpointing
        encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens)
        decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens)
        if not args.share_all_embeddings:
            min_params_to_wrap = getattr(
                args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP
            )
            # fsdp_wrap is a no-op when --ddp-backend != fully_sharded
            encoder = fsdp_wrap(encoder, min_num_params=min_params_to_wrap)
            decoder = fsdp_wrap(decoder, min_num_params=min_params_to_wrap)
        return cls(args, encoder, decoder)

    @classmethod
    def build_embedding(cls, args, dictionary, embed_dim, path=None):
        num_embeddings = len(dictionary)
        padding_idx = dictionary.pad()

        emb = Embedding(num_embeddings, embed_dim, padding_idx)
        # if provided, load from preloaded dictionaries
        if path:
            embed_dict = utils.parse_embedding(path)
            utils.load_embedding(embed_dict, dictionary, emb)
        return emb

    @classmethod
    def build_encoder(cls, args, src_dict, embed_tokens):
        return TransformerEncoder(args, src_dict, embed_tokens)

    @classmethod
    def build_decoder(cls, args, tgt_dict, embed_tokens):
        return TransformerDecoder(
            args,
            tgt_dict,
            embed_tokens,
            no_encoder_attn=getattr(args, "no_cross_attention", False),
        )

    # TorchScript doesn't support optional arguments with variable length (**kwargs).
    # Current workaround is to add union of all arguments in child classes.
    def forward(
        self,
        src_tokens,
        src_lengths,
        prev_output_tokens,
        return_all_hiddens: bool = True,
        features_only: bool = False,
        alignment_layer: Optional[int] = None,
        alignment_heads: Optional[int] = None,
    ):
        """
        Run the forward pass for an encoder-decoder model.

        Copied from the base class, but without ``**kwargs``,
        which are not supported by TorchScript.
        """
        encoder_out = self.encoder(
            src_tokens, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens
        )
        decoder_out = self.decoder(
            prev_output_tokens,
            encoder_out=encoder_out,
            features_only=features_only,
            alignment_layer=alignment_layer,
            alignment_heads=alignment_heads,
            src_lengths=src_lengths,
            return_all_hiddens=return_all_hiddens,
        )
        return decoder_out

    # Since get_normalized_probs is in the Fairseq Model which is not scriptable,
    # I rewrite the get_normalized_probs from Base Class to call the
    # helper function in the Base Class.
    @torch.jit.export
    def get_normalized_probs(
        self,
        net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
        log_probs: bool,
        sample: Optional[Dict[str, Tensor]] = None,
    ):
        """Get normalized probabilities (or log probs) from a net's output."""
        return self.get_normalized_probs_scriptable(net_output, log_probs, sample)


class TransformerEncoder(FairseqEncoder):
    """
    Transformer encoder consisting of *args.encoder_layers* layers. Each layer
    is a :class:`TransformerEncoderLayer`.

    Args:
        args (argparse.Namespace): parsed command-line arguments
        dictionary (~fairseq.data.Dictionary): encoding dictionary
        embed_tokens (torch.nn.Embedding): input embedding
    """

    def __init__(self, args, dictionary, embed_tokens):
        self.args = args
        super().__init__(dictionary)
        self.register_buffer("version", torch.Tensor([3]))

        self.dropout_module = FairseqDropout(
            args.dropout, module_name=self.__class__.__name__
        )
        self.encoder_layerdrop = args.encoder_layerdrop

        embed_dim = embed_tokens.embedding_dim
        self.padding_idx = embed_tokens.padding_idx
        self.max_source_positions = args.max_source_positions
        self.num_attention_heads = args.encoder_attention_heads

        self.embed_tokens = embed_tokens

        self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim)

        if getattr(args, "layernorm_embedding", False):
            self.layernorm_embedding = LayerNorm(embed_dim)
        else:
            self.layernorm_embedding = None

        if getattr(args, "add_type_embedding", False):
            self.type_embedding = Embedding(2, embed_dim, padding_idx=None)
        else:
            self.type_embedding = None

        if getattr(args, "sync_bn", False):
            norm_layer = BatchNorm2d
        else:
            norm_layer = None

        if args.resnet_type == 'resnet101':
            self.embed_images = ResNet([3, 4, 23], norm_layer=norm_layer, drop_path_rate=args.resnet_drop_path_rate)
        elif args.resnet_type == 'resnet152':
            self.embed_images = ResNet([3, 8, 36], norm_layer=norm_layer, drop_path_rate=args.resnet_drop_path_rate)
        else:
            raise NotImplementedError
        self.image_proj = Linear(1024, embed_dim)
        if getattr(args, "resnet_model_path", None):
            print("load resnet {}".format(args.resnet_model_path))
            resnet_state_dict = torch.load(self.args.resnet_model_path)
            self.embed_images.load_state_dict(resnet_state_dict)
        if getattr(args, "patch_layernorm_embedding", False):
            self.patch_layernorm_embedding = LayerNorm(embed_dim)
        else:
            self.patch_layernorm_embedding = None

        self.embed_positions = Embedding(args.max_source_positions + 2, embed_dim)
        self.embed_image_positions = Embedding(args.image_bucket_size ** 2 + 1, embed_dim)
        self.pos_ln = LayerNorm(embed_dim)
        self.image_pos_ln = LayerNorm(embed_dim)
        self.pos_scaling = float(embed_dim / args.encoder_attention_heads * args.attn_scale_factor) ** -0.5
        self.pos_q_linear = nn.Linear(embed_dim, embed_dim)
        self.pos_k_linear = nn.Linear(embed_dim, embed_dim)

        if not args.adaptive_input and args.quant_noise_pq > 0:
            self.quant_noise = apply_quant_noise_(
                nn.Linear(embed_dim, embed_dim, bias=False),
                args.quant_noise_pq,
                args.quant_noise_pq_block_size,
            )
        else:
            self.quant_noise = None

        if self.encoder_layerdrop > 0.0:
            self.layers = LayerDropModuleList(p=self.encoder_layerdrop)
        else:
            self.layers = nn.ModuleList([])

        dpr = [x.item() for x in torch.linspace(0, args.encoder_drop_path_rate, args.encoder_layers)]
        self.layers.extend(
            [self.build_encoder_layer(args, drop_path_rate=dpr[i]) for i in range(args.encoder_layers)]
        )
        self.num_layers = len(self.layers)

        if args.encoder_normalize_before:
            self.layer_norm = LayerNorm(embed_dim)
        else:
            self.layer_norm = None

        token_bucket_size = args.token_bucket_size
        token_num_rel_dis = 2 * token_bucket_size - 1
        token_rp_bucket = make_token_bucket_position(token_bucket_size)
        self.token_rel_pos_table_list = nn.ModuleList(
            [Embedding(token_num_rel_dis, self.num_attention_heads, zero_init=True) for _ in range(args.encoder_layers)]
        )

        image_bucket_size = args.image_bucket_size
        image_num_rel_dis = (2 * image_bucket_size - 1) * (2 * image_bucket_size - 1) + 3
        image_rp_bucket = make_image_bucket_position(image_bucket_size, image_num_rel_dis)
        self.image_rel_pos_table_list = nn.ModuleList(
            [Embedding(image_num_rel_dis, self.num_attention_heads, zero_init=True) for _ in range(args.encoder_layers)]
        )

        self.register_buffer("token_rp_bucket", token_rp_bucket)
        self.register_buffer("image_rp_bucket", image_rp_bucket)
        self.entangle_position_embedding = args.entangle_position_embedding

    def train(self, mode=True):
        super(TransformerEncoder, self).train(mode)
        if getattr(self.args, "freeze_resnet", False):
            for m in self.embed_images.modules():
                if isinstance(m, nn.BatchNorm2d):
                    m.eval()
                    m.weight.requires_grad = False
                    m.bias.requires_grad = False

    def build_encoder_layer(self, args, drop_path_rate=0.0):
        layer = TransformerEncoderLayer(args, drop_path_rate=drop_path_rate)
        checkpoint = getattr(args, "checkpoint_activations", False)
        if checkpoint:
            offload_to_cpu = getattr(args, "offload_activations", False)
            layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu)
        # if we are checkpointing, enforce that FSDP always wraps the
        # checkpointed layer, regardless of layer size
        min_params_to_wrap = (
            getattr(args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP)
            if not checkpoint else 0
        )
        layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap)
        return layer

    def get_rel_pos_bias(self, x, idx):
        seq_len = x.size(1)
        rp_bucket = self.token_rp_bucket[:seq_len, :seq_len]
        values = F.embedding(rp_bucket, self.token_rel_pos_table_list[idx].weight)
        values = values.unsqueeze(0).expand(x.size(0), -1, -1, -1)
        values = values.permute([0, 3, 1, 2])
        return values.contiguous()

    def get_image_rel_pos_bias(self, image_position_ids, idx):
        bsz, seq_len = image_position_ids.shape
        rp_bucket_size = self.image_rp_bucket.size(1)

        rp_bucket = self.image_rp_bucket.unsqueeze(0).expand(
            bsz, rp_bucket_size, rp_bucket_size
        ).gather(1, image_position_ids[:, :, None].expand(bsz, seq_len, rp_bucket_size)
        ).gather(2, image_position_ids[:, None, :].expand(bsz, seq_len, seq_len))
        values = F.embedding(rp_bucket, self.image_rel_pos_table_list[idx].weight)
        values = values.permute(0, 3, 1, 2)
        return values

    def get_patch_images_info(self, patch_images, sample_patch_num, device):
        image_embed = self.embed_images(patch_images)
        h, w = image_embed.shape[-2:]
        image_num_patches = h * w
        image_padding_mask = patch_images.new_zeros((patch_images.size(0), image_num_patches)).bool()
        image_position_idx = torch.arange(w).unsqueeze(0).expand(h, w) + \
                             torch.arange(h).unsqueeze(1) * self.args.image_bucket_size + 1
        image_position_idx = image_position_idx.view(-1).to(device)
        image_position_ids = image_position_idx[None, :].expand(patch_images.size(0), image_num_patches)

        image_embed = image_embed.flatten(2).transpose(1, 2)
        if sample_patch_num is not None:
            patch_orders = [
                random.sample(range(image_num_patches), k=sample_patch_num)
                for _ in range(patch_images.size(0))
            ]
            patch_orders = torch.LongTensor(patch_orders).to(device)
            image_embed = image_embed.gather(
                1, patch_orders.unsqueeze(2).expand(-1, -1, image_embed.size(2))
            )
            image_num_patches = sample_patch_num
            image_padding_mask = image_padding_mask.gather(1, patch_orders)
            image_position_ids = image_position_ids.gather(1, patch_orders)
        image_pos_embed = self.embed_image_positions(image_position_ids)

        return image_embed, image_num_patches, image_padding_mask, image_position_ids, image_pos_embed

    def forward_embedding(
        self,
        src_tokens,
        image_embed: Optional[torch.Tensor] = None,
        image_embed_2: Optional[torch.Tensor] = None,
        token_embedding: Optional[torch.Tensor] = None,
        pos_embed: Optional[torch.Tensor] = None,
        image_pos_embed: Optional[torch.Tensor] = None,
        image_pos_embed_2: Optional[torch.Tensor] = None
    ):
        # embed tokens and positions
        if token_embedding is None:
            token_embedding = self.embed_tokens(src_tokens)
        x = embed = self.embed_scale * token_embedding
        if self.entangle_position_embedding and pos_embed is not None:
            x += pos_embed
        if self.type_embedding is not None:
            x += self.type_embedding(src_tokens.new_zeros(x.size()[:2]))
        if self.layernorm_embedding is not None:
            x = self.layernorm_embedding(x)
        x = self.dropout_module(x)
        if self.quant_noise is not None:
            x = self.quant_noise(x)

        # embed raw images
        if image_embed is not None:
            image_embed = self.image_proj(image_embed)
            image_x = image_embed = self.embed_scale * image_embed
            if self.entangle_position_embedding and image_pos_embed is not None:
                image_x += image_pos_embed
            if self.type_embedding is not None:
                image_x += self.type_embedding(src_tokens.new_ones(image_x.size()[:2]))
            if self.patch_layernorm_embedding is not None:
                image_x = self.patch_layernorm_embedding(image_x)
            image_x = self.dropout_module(image_x)
            if self.quant_noise is not None:
                image_x = self.quant_noise(image_x)
            x = torch.cat([image_x, x], dim=1)
            embed = torch.cat([image_embed, embed], dim=1)

        if image_embed_2 is not None:
            assert self.type_embedding is not None
            image_embed_2 = self.image_proj(image_embed_2)
            image_x_2 = image_embed_2 = self.embed_scale * image_embed_2
            if self.entangle_position_embedding and image_pos_embed_2 is not None:
                image_x_2 += image_pos_embed_2
            if self.type_embedding is not None:
                image_x_2 += self.type_embedding(src_tokens.new_full(image_x_2.size()[:2], fill_value=2))
            if self.patch_layernorm_embedding is not None:
                image_x_2 = self.patch_layernorm_embedding(image_x_2)
            image_x_2 = self.dropout_module(image_x_2)
            if self.quant_noise is not None:
                image_x_2 = self.quant_noise(image_x_2)
            x = torch.cat([image_x_2, x], dim=1)
            embed = torch.cat([image_embed_2, embed], dim=1)

        return x, embed

    def forward(
        self,
        src_tokens,
        src_lengths,
        patch_images: Optional[torch.Tensor] = None,
        patch_images_2: Optional[torch.Tensor] = None,
        patch_masks: Optional[torch.Tensor] = None,
        code_masks: Optional[torch.Tensor] = None,
        return_all_hiddens: bool = False,
        token_embeddings: Optional[torch.Tensor] = None,
        sample_patch_num: Optional[int] = None
    ):
        """
        Args:
            src_tokens (LongTensor): tokens in the source language of shape
                `(batch, src_len)`
            src_lengths (torch.LongTensor): lengths of each source sentence of
                shape `(batch)`
            return_all_hiddens (bool, optional): also return all of the
                intermediate hidden states (default: False).
            token_embeddings (torch.Tensor, optional): precomputed embeddings
                default `None` will recompute embeddings

        Returns:
            dict:
                - **encoder_out** (Tensor): the last encoder layer's output of
                  shape `(src_len, batch, embed_dim)`
                - **encoder_padding_mask** (ByteTensor): the positions of
                  padding elements of shape `(batch, src_len)`
                - **encoder_embedding** (Tensor): the (scaled) embedding lookup
                  of shape `(batch, src_len, embed_dim)`
                - **encoder_states** (List[Tensor]): all intermediate
                  hidden states of shape `(src_len, batch, embed_dim)`.
                  Only populated if *return_all_hiddens* is True.
        """
        return self.forward_scriptable(src_tokens,
                                       src_lengths,
                                       patch_images,
                                       patch_images_2,
                                       patch_masks,
                                       return_all_hiddens,
                                       token_embeddings,
                                       sample_patch_num)

    # TorchScript doesn't support super() method so that the scriptable Subclass
    # can't access the base class model in Torchscript.
    # Current workaround is to add a helper function with different name and
    # call the helper function from scriptable Subclass.
    def forward_scriptable(
        self,
        src_tokens,
        src_lengths,
        patch_images: Optional[torch.Tensor] = None,
        patch_images_2: Optional[torch.Tensor] = None,
        patch_masks: Optional[torch.Tensor] = None,
        return_all_hiddens: bool = False,
        token_embeddings: Optional[torch.Tensor] = None,
        sample_patch_num: Optional[int] = None
    ):
        """
        Args:
            src_tokens (LongTensor): tokens in the source language of shape
                `(batch, src_len)`
            src_lengths (torch.LongTensor): lengths of each source sentence of
                shape `(batch)`
            return_all_hiddens (bool, optional): also return all of the
                intermediate hidden states (default: False).
            token_embeddings (torch.Tensor, optional): precomputed embeddings
                default `None` will recompute embeddings

        Returns:
            dict:
                - **encoder_out** (Tensor): the last encoder layer's output of
                  shape `(src_len, batch, embed_dim)`
                - **encoder_padding_mask** (ByteTensor): the positions of
                  padding elements of shape `(batch, src_len)`
                - **encoder_embedding** (Tensor): the (scaled) embedding lookup
                  of shape `(batch, src_len, embed_dim)`
                - **encoder_states** (List[Tensor]): all intermediate
                  hidden states of shape `(src_len, batch, embed_dim)`.
                  Only populated if *return_all_hiddens* is True.
        """
        image_embed = None
        image_embed_2 = None
        image_pos_embed = None
        image_pos_embed_2 = None
        if patch_images is not None:
            image_embed, image_num_patches, image_padding_mask, image_position_ids, image_pos_embed = \
                self.get_patch_images_info(patch_images, sample_patch_num, src_tokens.device)
            image_padding_mask[~patch_masks] = True
        if patch_images_2 is not None:
            image_embed_2, image_num_patches_2, image_padding_mask_2, image_position_ids_2, image_pos_embed_2 = \
                self.get_patch_images_info(patch_images_2, sample_patch_num, src_tokens.device)
            image_padding_mask_2[~patch_masks] = True

        encoder_padding_mask = src_tokens.eq(self.padding_idx)
        if patch_images is not None:
            encoder_padding_mask = torch.cat([image_padding_mask, encoder_padding_mask], dim=1)
        if patch_images_2 is not None:
            encoder_padding_mask = torch.cat([image_padding_mask_2, encoder_padding_mask], dim=1)
        has_pads = (src_tokens.device.type == "xla" or encoder_padding_mask.any())

        pos_embed = self.embed_positions(utils.new_arange(src_tokens))
        x, encoder_embedding = self.forward_embedding(
            src_tokens, image_embed, image_embed_2, token_embeddings,
            pos_embed, image_pos_embed, image_pos_embed_2
        )

        # account for padding while computing the representation
        if has_pads:
            x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x))

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        pos_embed = self.pos_ln(pos_embed)
        if patch_images is not None:
            image_pos_embed = self.image_pos_ln(image_pos_embed)
            pos_embed = torch.cat([image_pos_embed, pos_embed], dim=1)
        if patch_images_2 is not None:
            image_pos_embed_2 = self.image_pos_ln(image_pos_embed_2)
            pos_embed = torch.cat([image_pos_embed_2, pos_embed], dim=1)

        pos_q = self.pos_q_linear(pos_embed).view(
            x.size(1), x.size(0), self.num_attention_heads, -1
        ).transpose(1, 2) * self.pos_scaling
        pos_k = self.pos_k_linear(pos_embed).view(
            x.size(1), x.size(0), self.num_attention_heads, -1
        ).transpose(1, 2)
        abs_pos_bias = torch.matmul(pos_q, pos_k.transpose(2, 3))

        encoder_states = []

        if return_all_hiddens:
            encoder_states.append(x)

        # encoder layers
        for idx, layer in enumerate(self.layers):
            self_attn_bias = abs_pos_bias.clone()
            self_attn_bias[:, :, -src_tokens.size(1):, -src_tokens.size(1):] += self.get_rel_pos_bias(src_tokens, idx)
            if patch_images_2 is not None:
                self_attn_bias[:, :, :image_num_patches_2, :image_num_patches_2] += \
                    self.get_image_rel_pos_bias(image_position_ids_2, idx)
                self_attn_bias[:, :, image_num_patches_2:image_num_patches_2+image_num_patches, image_num_patches_2:image_num_patches_2+image_num_patches] += \
                    self.get_image_rel_pos_bias(image_position_ids, idx)
            elif patch_images is not None:
                self_attn_bias[:, :, :x.size(0) - src_tokens.size(1), :x.size(0) - src_tokens.size(1)] += \
                    self.get_image_rel_pos_bias(image_position_ids, idx)
            self_attn_bias = self_attn_bias.reshape(-1, x.size(0), x.size(0))

            x = layer(
                x, encoder_padding_mask=encoder_padding_mask if has_pads else None, self_attn_bias=self_attn_bias
            )
            if return_all_hiddens:
                assert encoder_states is not None
                encoder_states.append(x)

        if self.layer_norm is not None:
            x = self.layer_norm(x)

        # The Pytorch Mobile lite interpreter does not supports returning NamedTuple in
        # `forward` so we use a dictionary instead.
        # TorchScript does not support mixed values so the values are all lists.
        # The empty list is equivalent to None.
        return {
            "encoder_out": [x],  # T x B x C
            "encoder_padding_mask": [encoder_padding_mask],  # B x T
            "encoder_embedding": [],  # B x T x C
            "encoder_states": encoder_states,  # List[T x B x C]
            "src_tokens": [],
            "src_lengths": [],
            "position_embeddings": [pos_embed],  # B x T x C
        }

    @torch.jit.export
    def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order):
        """
        Reorder encoder output according to *new_order*.

        Args:
            encoder_out: output from the ``forward()`` method
            new_order (LongTensor): desired order

        Returns:
            *encoder_out* rearranged according to *new_order*
        """
        if len(encoder_out["encoder_out"]) == 0:
            new_encoder_out = []
        else:
            new_encoder_out = [encoder_out["encoder_out"][0].index_select(1, new_order)]
        if len(encoder_out["encoder_padding_mask"]) == 0:
            new_encoder_padding_mask = []
        else:
            new_encoder_padding_mask = [
                encoder_out["encoder_padding_mask"][0].index_select(0, new_order)
            ]
        if len(encoder_out["encoder_embedding"]) == 0:
            new_encoder_embedding = []
        else:
            new_encoder_embedding = [
                encoder_out["encoder_embedding"][0].index_select(0, new_order)
            ]

        if len(encoder_out["src_tokens"]) == 0:
            new_src_tokens = []
        else:
            new_src_tokens = [(encoder_out["src_tokens"][0]).index_select(0, new_order)]

        if len(encoder_out["src_lengths"]) == 0:
            new_src_lengths = []
        else:
            new_src_lengths = [(encoder_out["src_lengths"][0]).index_select(0, new_order)]

        if len(encoder_out["position_embeddings"]) == 0:
            new_position_embeddings = []
        else:
            new_position_embeddings = [(encoder_out["position_embeddings"][0]).index_select(0, new_order)]

        encoder_states = encoder_out["encoder_states"]
        if len(encoder_states) > 0:
            for idx, state in enumerate(encoder_states):
                encoder_states[idx] = state.index_select(1, new_order)

        return {
            "encoder_out": new_encoder_out,  # T x B x C
            "encoder_padding_mask": new_encoder_padding_mask,  # B x T
            "encoder_embedding": new_encoder_embedding,  # B x T x C
            "encoder_states": encoder_states,  # List[T x B x C]
            "src_tokens": new_src_tokens,  # B x T
            "src_lengths": new_src_lengths,  # B x 1
            "position_embeddings": new_position_embeddings,  # B x T x C
        }

    def max_positions(self):
        """Maximum input length supported by the encoder."""
        if self.embed_positions is None:
            return self.max_source_positions
        return self.max_source_positions

    def upgrade_state_dict_named(self, state_dict, name):
        """Upgrade a (possibly old) state dict for new versions of fairseq."""
        if isinstance(self.embed_positions, SinusoidalPositionalEmbedding):
            weights_key = "{}.embed_positions.weights".format(name)
            if weights_key in state_dict:
                print("deleting {0}".format(weights_key))
                del state_dict[weights_key]
            state_dict[
                "{}.embed_positions._float_tensor".format(name)
            ] = torch.FloatTensor(1)
        for i in range(self.num_layers):
            # update layer norms
            self.layers[i].upgrade_state_dict_named(
                state_dict, "{}.layers.{}".format(name, i)
            )

        # version_key = "{}.version".format(name)
        # if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2:
        #     # earlier checkpoints did not normalize after the stack of layers
        #     self.layer_norm = None
        #     self.normalize = False
        #     state_dict[version_key] = torch.Tensor([1])

        prefix = name + "." if name != "" else ""
        for param_name, param_tensor in self.state_dict().items():
            if (prefix + param_name) not in state_dict and param_name in self.state_dict():
                state_dict[prefix + param_name] = self.state_dict()[param_name]

        if len(state_dict["encoder.embed_image_positions.weight"]) < len(self.state_dict()["embed_image_positions.weight"]):
            num_posids_to_add = len(self.state_dict()["embed_image_positions.weight"]) - len(state_dict["encoder.embed_image_positions.weight"])
            embed_dim = state_dict["encoder.embed_image_positions.weight"].size(1)
            new_pos_embed_to_add = torch.zeros(num_posids_to_add, embed_dim)
            nn.init.normal_(new_pos_embed_to_add, mean=0, std=embed_dim ** -0.5)
            new_pos_embed_to_add = new_pos_embed_to_add.to(
                dtype=state_dict["encoder.embed_image_positions.weight"].dtype,
            )
            state_dict["encoder.embed_image_positions.weight"] = torch.cat(
                [state_dict["encoder.embed_image_positions.weight"], new_pos_embed_to_add]
            )
        return state_dict


class TransformerDecoder(FairseqIncrementalDecoder):
    """
    Transformer decoder consisting of *args.decoder_layers* layers. Each layer
    is a :class:`TransformerDecoderLayer`.

    Args:
        args (argparse.Namespace): parsed command-line arguments
        dictionary (~fairseq.data.Dictionary): decoding dictionary
        embed_tokens (torch.nn.Embedding): output embedding
        no_encoder_attn (bool, optional): whether to attend to encoder outputs
            (default: False).
    """

    def __init__(
        self,
        args,
        dictionary,
        embed_tokens,
        no_encoder_attn=False,
        output_projection=None,
    ):
        self.args = args
        super().__init__(dictionary)
        self.register_buffer("version", torch.Tensor([3]))
        self._future_mask = torch.empty(0)

        self.dropout_module = FairseqDropout(
            args.dropout, module_name=self.__class__.__name__
        )
        self.decoder_layerdrop = args.decoder_layerdrop
        self.share_input_output_embed = args.share_decoder_input_output_embed
        self.num_attention_heads = args.decoder_attention_heads

        input_embed_dim = embed_tokens.embedding_dim
        embed_dim = args.decoder_embed_dim
        self.embed_dim = embed_dim
        self.output_embed_dim = args.decoder_output_dim

        self.padding_idx = embed_tokens.padding_idx
        self.max_target_positions = args.max_target_positions

        self.embed_tokens = embed_tokens

        self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim)

        if not args.adaptive_input and args.quant_noise_pq > 0:
            self.quant_noise = apply_quant_noise_(
                nn.Linear(embed_dim, embed_dim, bias=False),
                args.quant_noise_pq,
                args.quant_noise_pq_block_size,
            )
        else:
            self.quant_noise = None

        self.project_in_dim = (
            Linear(input_embed_dim, embed_dim, bias=False)
            if embed_dim != input_embed_dim
            else None
        )

        if getattr(args, "layernorm_embedding", False):
            self.layernorm_embedding = LayerNorm(embed_dim)
        else:
            self.layernorm_embedding = None

        self.window_size = args.code_image_size // 8

        self.embed_positions = Embedding(args.max_target_positions + 2, embed_dim)
        self.embed_image_positions = Embedding(args.image_bucket_size ** 2 + 1, embed_dim)
        self.pos_ln = LayerNorm(embed_dim)
        self.image_pos_ln = LayerNorm(embed_dim)
        self.pos_scaling = float(embed_dim / self.num_attention_heads * args.attn_scale_factor) ** -0.5
        self.self_pos_q_linear = nn.Linear(embed_dim, embed_dim)
        self.self_pos_k_linear = nn.Linear(embed_dim, embed_dim)
        self.cross_pos_q_linear = nn.Linear(embed_dim, embed_dim)
        self.cross_pos_k_linear = nn.Linear(embed_dim, embed_dim)

        if getattr(args, "code_layernorm_embedding", False):
            self.code_layernorm_embedding = LayerNorm(embed_dim)
        else:
            self.code_layernorm_embedding = None

        self.cross_self_attention = getattr(args, "cross_self_attention", False)

        if self.decoder_layerdrop > 0.0:
            self.layers = LayerDropModuleList(p=self.decoder_layerdrop)
        else:
            self.layers = nn.ModuleList([])

        dpr = [x.item() for x in torch.linspace(0, args.decoder_drop_path_rate, args.decoder_layers)]
        self.layers.extend(
            [
                self.build_decoder_layer(args, no_encoder_attn, drop_path_rate=dpr[i])
                for i in range(args.decoder_layers)
            ]
        )
        self.num_layers = len(self.layers)

        if args.decoder_normalize_before:
            self.layer_norm = LayerNorm(embed_dim)
        else:
            self.layer_norm = None

        self.project_out_dim = (
            Linear(embed_dim, self.output_embed_dim, bias=False)
            if embed_dim != self.output_embed_dim and not args.tie_adaptive_weights
            else None
        )

        self.adaptive_softmax = None
        self.output_projection = output_projection
        if self.output_projection is None:
            self.build_output_projection(args, dictionary, embed_tokens)

        token_bucket_size = args.token_bucket_size
        token_num_rel_dis = 2 * token_bucket_size - 1
        token_rp_bucket = make_token_bucket_position(token_bucket_size)
        self.token_rel_pos_table_list = nn.ModuleList(
            [Embedding(token_num_rel_dis, self.num_attention_heads, zero_init=True) for _ in range(args.decoder_layers)]
        )

        image_bucket_size = args.image_bucket_size
        image_num_rel_dis = (2 * image_bucket_size - 1) * (2 * image_bucket_size - 1) + 3
        image_rp_bucket = make_image_bucket_position(image_bucket_size, image_num_rel_dis)
        image_position_idx = torch.arange(self.window_size).unsqueeze(0).expand(self.window_size, self.window_size) + \
                             torch.arange(self.window_size).unsqueeze(1) * image_bucket_size + 1
        image_position_idx = torch.cat([torch.tensor([0]), image_position_idx.view(-1)])
        image_position_idx = torch.cat([image_position_idx, torch.tensor([1024] * 768)])
        self.image_rel_pos_table_list = nn.ModuleList(
            [Embedding(image_num_rel_dis, self.num_attention_heads, zero_init=True) for _ in range(args.decoder_layers)]
        )

        self.register_buffer("token_rp_bucket", token_rp_bucket)
        self.register_buffer("image_rp_bucket", image_rp_bucket)
        self.register_buffer("image_position_idx", image_position_idx)
        self.entangle_position_embedding = args.entangle_position_embedding

    def build_output_projection(self, args, dictionary, embed_tokens):
        if args.adaptive_softmax_cutoff is not None:
            self.adaptive_softmax = AdaptiveSoftmax(
                len(dictionary),
                self.output_embed_dim,
                utils.eval_str_list(args.adaptive_softmax_cutoff, type=int),
                dropout=args.adaptive_softmax_dropout,
                adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None,
                factor=args.adaptive_softmax_factor,
                tie_proj=args.tie_adaptive_proj,
            )
        elif self.share_input_output_embed:
            self.output_projection = nn.Linear(
                self.embed_tokens.weight.shape[1],
                self.embed_tokens.weight.shape[0],
                bias=False,
            )
            self.output_projection.weight = self.embed_tokens.weight
        else:
            self.output_projection = nn.Linear(
                self.output_embed_dim, len(dictionary), bias=False
            )
            nn.init.normal_(
                self.output_projection.weight, mean=0, std=self.output_embed_dim ** -0.5
            )
        num_base_layers = getattr(args, "base_layers", 0)
        for i in range(num_base_layers):
            self.layers.insert(((i+1) * args.decoder_layers) // (num_base_layers + 1), BaseLayer(args))

    def build_decoder_layer(self, args, no_encoder_attn=False, drop_path_rate=0.0):
        layer = TransformerDecoderLayer(args, no_encoder_attn, drop_path_rate=drop_path_rate)
        checkpoint = getattr(args, "checkpoint_activations", False)
        if checkpoint:
            offload_to_cpu = getattr(args, "offload_activations", False)
            layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu)
        # if we are checkpointing, enforce that FSDP always wraps the
        # checkpointed layer, regardless of layer size
        min_params_to_wrap = (
            getattr(args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP)
            if not checkpoint else 0
        )
        layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap)
        return layer

    def get_rel_pos_bias(self, x, idx):
        seq_len = x.size(1)
        rp_bucket = self.token_rp_bucket[:seq_len, :seq_len]
        values = F.embedding(rp_bucket, self.token_rel_pos_table_list[idx].weight)
        values = values.permute([2, 0, 1])
        return values.contiguous()

    def get_image_rel_pos_bias(self, x, idx):
        seq_len = x.size(1)
        image_position_idx = self.image_position_idx[:seq_len]
        rp_bucket = self.image_rp_bucket[image_position_idx][:, image_position_idx]
        values = F.embedding(rp_bucket, self.image_rel_pos_table_list[idx].weight)
        values = values.permute(2, 0, 1)
        return values

    def get_pos_info(self, tokens, tgt_pos_embed, src_pos_embed=None, use_image=False):
        batch_size = tokens.size(0)
        tgt_len = tokens.size(1)
        tgt_pos_embed = self.image_pos_ln(tgt_pos_embed) if use_image else self.pos_ln(tgt_pos_embed)
        if src_pos_embed is not None:
            src_len = src_pos_embed.size(1)
            pos_q = self.cross_pos_q_linear(tgt_pos_embed).view(
                batch_size, tgt_len, self.num_attention_heads, -1
            ).transpose(1, 2) * self.pos_scaling
            pos_k = self.cross_pos_k_linear(src_pos_embed).view(
                batch_size, src_len, self.num_attention_heads, -1
            ).transpose(1, 2)
        else:
            src_len = tgt_pos_embed.size(1)
            pos_q = self.self_pos_q_linear(tgt_pos_embed).view(
                batch_size, tgt_len, self.num_attention_heads, -1
            ).transpose(1, 2) * self.pos_scaling
            pos_k = self.self_pos_k_linear(tgt_pos_embed).view(
                batch_size, src_len, self.num_attention_heads, -1
            ).transpose(1, 2)
        abs_pos_bias = torch.matmul(pos_q, pos_k.transpose(2, 3))
        return abs_pos_bias

    def forward(
        self,
        prev_output_tokens,
        code_masks: Optional[torch.Tensor] = None,
        encoder_out: Optional[Dict[str, List[Tensor]]] = None,
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        features_only: bool = False,
        full_context_alignment: bool = False,
        alignment_layer: Optional[int] = None,
        alignment_heads: Optional[int] = None,
        src_lengths: Optional[Any] = None,
        return_all_hiddens: bool = False,
    ):
        """
        Args:
            prev_output_tokens (LongTensor): previous decoder outputs of shape
                `(batch, tgt_len)`, for teacher forcing
            encoder_out (optional): output from the encoder, used for
                encoder-side attention, should be of size T x B x C
            incremental_state (dict): dictionary used for storing state during
                :ref:`Incremental decoding`
            features_only (bool, optional): only return features without
                applying output layer (default: False).
            full_context_alignment (bool, optional): don't apply
                auto-regressive mask to self-attention (default: False).

        Returns:
            tuple:
                - the decoder's output of shape `(batch, tgt_len, vocab)`
                - a dictionary with any model-specific outputs
        """

        x, extra = self.extract_features(
            prev_output_tokens,
            code_masks=code_masks,
            encoder_out=encoder_out,
            incremental_state=incremental_state,
            full_context_alignment=full_context_alignment,
            alignment_layer=alignment_layer,
            alignment_heads=alignment_heads,
        )

        if not features_only:
            x = self.output_layer(x)
        return x, extra

    def extract_features(
        self,
        prev_output_tokens,
        code_masks: Optional[torch.Tensor],
        encoder_out: Optional[Dict[str, List[Tensor]]],
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        full_context_alignment: bool = False,
        alignment_layer: Optional[int] = None,
        alignment_heads: Optional[int] = None,
    ):
        return self.extract_features_scriptable(
            prev_output_tokens,
            code_masks,
            encoder_out,
            incremental_state,
            full_context_alignment,
            alignment_layer,
            alignment_heads,
        )

    """
    A scriptable subclass of this class has an extract_features method and calls
    super().extract_features, but super() is not supported in torchscript. A copy of
    this function is made to be used in the subclass instead.
    """

    def extract_features_scriptable(
        self,
        prev_output_tokens,
        code_masks: Optional[torch.Tensor],
        encoder_out: Optional[Dict[str, List[Tensor]]],
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        full_context_alignment: bool = False,
        alignment_layer: Optional[int] = None,
        alignment_heads: Optional[int] = None,
    ):
        """
        Similar to *forward* but only return features.

        Includes several features from "Jointly Learning to Align and
        Translate with Transformer Models" (Garg et al., EMNLP 2019).

        Args:
            full_context_alignment (bool, optional): don't apply
                auto-regressive mask to self-attention (default: False).
            alignment_layer (int, optional): return mean alignment over
                heads at this layer (default: last layer).
            alignment_heads (int, optional): only average alignment over
                this many heads (default: all heads).

        Returns:
            tuple:
                - the decoder's features of shape `(batch, tgt_len, embed_dim)`
                - a dictionary with any model-specific outputs
        """
        bs, slen = prev_output_tokens.size()
        if alignment_layer is None:
            alignment_layer = self.num_layers - 1

        enc: Optional[Tensor] = None
        padding_mask: Optional[Tensor] = None
        if encoder_out is not None and len(encoder_out["encoder_out"]) > 0:
            enc = encoder_out["encoder_out"][0]
            assert (
                enc.size()[1] == bs
            ), f"Expected enc.shape == (t, {bs}, c) got {enc.shape}"
        if encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0:
            padding_mask = encoder_out["encoder_padding_mask"][0]

        bsz, tgt_len = prev_output_tokens.shape
        token_position_idx = utils.new_arange(prev_output_tokens)
        tgt_pos_embed = self.embed_positions(token_position_idx)
        if code_masks is not None and torch.any(code_masks):
            image_position_idx = self.image_position_idx[:prev_output_tokens.size(1)].unsqueeze(0).expand(bsz, tgt_len)
            tgt_pos_embed[code_masks] = self.embed_image_positions(image_position_idx)[code_masks]

        # self attn position bias
        self_abs_pos_bias = self.get_pos_info(prev_output_tokens, tgt_pos_embed, use_image=False)
        if code_masks is not None and torch.any(code_masks):
            self_image_abs_pos_bias = self.get_pos_info(prev_output_tokens, tgt_pos_embed, use_image=True)
            self_abs_pos_bias[code_masks] = self_image_abs_pos_bias[code_masks]
        # cross attn position bias
        src_pos_embed = encoder_out['position_embeddings'][0]
        cross_abs_pos_bias = self.get_pos_info(prev_output_tokens, tgt_pos_embed, src_pos_embed=src_pos_embed)
        if code_masks is not None and torch.any(code_masks):
            cross_image_abs_pos_bias = self.get_pos_info(prev_output_tokens, tgt_pos_embed, src_pos_embed=src_pos_embed, use_image=True)
            cross_abs_pos_bias[code_masks] = cross_image_abs_pos_bias[code_masks]
        cross_abs_pos_bias = cross_abs_pos_bias.reshape(-1, *cross_abs_pos_bias.size()[-2:])

        all_prev_output_tokens = prev_output_tokens.clone()
        if incremental_state is not None:
            prev_output_tokens = prev_output_tokens[:, -1:]
            cross_abs_pos_bias = cross_abs_pos_bias[:, -1:, :]
            tgt_pos_embed = tgt_pos_embed[:, -1:, :]

        # embed tokens and positions
        x = self.embed_scale * self.embed_tokens(prev_output_tokens)

        if self.quant_noise is not None:
            x = self.quant_noise(x)

        if self.project_in_dim is not None:
            x = self.project_in_dim(x)

        if self.entangle_position_embedding is not None and not self.args.disable_entangle:
            x += tgt_pos_embed

        if self.layernorm_embedding is not None:
            if code_masks is None or not code_masks.any() or not getattr(self, "code_layernorm_embedding", False):
                x = self.layernorm_embedding(x)
            elif code_masks is not None and code_masks.all():
                x = self.code_layernorm_embedding(x)
            else:
                x[~code_masks] = self.layernorm_embedding(x[~code_masks])
                x[code_masks] = self.code_layernorm_embedding(x[code_masks])

        x = self.dropout_module(x)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        self_attn_padding_mask: Optional[Tensor] = None
        if self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any():
            self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx)

        # decoder layers
        attn: Optional[Tensor] = None
        inner_states: List[Optional[Tensor]] = [x]
        for idx, layer in enumerate(self.layers):
            if incremental_state is None and not full_context_alignment:
                self_attn_mask = self.buffered_future_mask(x)
            else:
                self_attn_mask = None

            self_attn_bias = self_abs_pos_bias.clone()
            if code_masks is None or not code_masks.any():
                self_attn_bias += self.get_rel_pos_bias(all_prev_output_tokens, idx).unsqueeze(0)
            elif code_masks is not None and code_masks.all():
                self_attn_bias += self.get_image_rel_pos_bias(all_prev_output_tokens, idx).unsqueeze(0)
            else:
                self_attn_bias[~code_masks] += self.get_rel_pos_bias(all_prev_output_tokens, idx).unsqueeze(0)
                self_attn_bias[code_masks] += self.get_image_rel_pos_bias(all_prev_output_tokens, idx).unsqueeze(0)
            self_attn_bias = self_attn_bias.reshape(-1, *self_attn_bias.size()[-2:])
            if incremental_state is not None:
                self_attn_bias = self_attn_bias[:, -1:, :]

            x, layer_attn, _ = layer(
                x,
                enc,
                padding_mask,
                incremental_state,
                self_attn_mask=self_attn_mask,
                self_attn_padding_mask=self_attn_padding_mask,
                need_attn=bool((idx == alignment_layer)),
                need_head_weights=bool((idx == alignment_layer)),
                self_attn_bias=self_attn_bias,
                cross_attn_bias=cross_abs_pos_bias
            )
            inner_states.append(x)
            if layer_attn is not None and idx == alignment_layer:
                attn = layer_attn.float().to(x)

        if attn is not None:
            if alignment_heads is not None:
                attn = attn[:alignment_heads]

            # average probabilities over heads
            attn = attn.mean(dim=0)

        if self.layer_norm is not None:
            x = self.layer_norm(x)

        # T x B x C -> B x T x C
        x = x.transpose(0, 1)

        if self.project_out_dim is not None:
            x = self.project_out_dim(x)

        return x, {"attn": [attn], "inner_states": inner_states}

    def output_layer(self, features):
        """Project features to the vocabulary size."""
        if self.adaptive_softmax is None:
            # project back to size of vocabulary
            return self.output_projection(features)
        else:
            return features

    def max_positions(self):
        """Maximum output length supported by the decoder."""
        if self.embed_positions is None:
            return self.max_target_positions
        return self.max_target_positions

    def buffered_future_mask(self, tensor):
        dim = tensor.size(0)
        # self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround.
        if (
            self._future_mask.size(0) == 0
            or (not self._future_mask.device == tensor.device)
            or self._future_mask.size(0) < dim
        ):
            self._future_mask = torch.triu(
                utils.fill_with_neg_inf(torch.zeros([dim, dim])), 1
            )
        self._future_mask = self._future_mask.to(tensor)
        return self._future_mask[:dim, :dim]

    def upgrade_state_dict_named(self, state_dict, name):
        """Upgrade a (possibly old) state dict for new versions of fairseq."""
        if isinstance(self.embed_positions, SinusoidalPositionalEmbedding):
            weights_key = "{}.embed_positions.weights".format(name)
            if weights_key in state_dict:
                del state_dict[weights_key]
            state_dict[
                "{}.embed_positions._float_tensor".format(name)
            ] = torch.FloatTensor(1)

        if f"{name}.output_projection.weight" not in state_dict:
            if self.share_input_output_embed:
                embed_out_key = f"{name}.embed_tokens.weight"
            else:
                embed_out_key = f"{name}.embed_out"
            if embed_out_key in state_dict:
                state_dict[f"{name}.output_projection.weight"] = state_dict[
                    embed_out_key
                ]
                if not self.share_input_output_embed:
                    del state_dict[embed_out_key]

        for i in range(self.num_layers):
            # update layer norms
            self.layers[i].upgrade_state_dict_named(
                state_dict, "{}.layers.{}".format(name, i)
            )

        # version_key = "{}.version".format(name)
        # if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) <= 2:
        #     # earlier checkpoints did not normalize after the stack of layers
        #     self.layer_norm = None
        #     self.normalize = False
        #     state_dict[version_key] = torch.Tensor([1])

        prefix = name + "." if name != "" else ""
        image_params = ["image_position_idx"]
        for image_param in image_params:
            state_dict[prefix + image_param] = self.state_dict()[image_param]
        for param_name, param_tensor in self.state_dict().items():
            if (prefix + param_name) not in state_dict and param_name in self.state_dict():
                state_dict[prefix + param_name] = self.state_dict()[param_name]

        if len(state_dict["decoder.embed_image_positions.weight"]) < len(self.state_dict()["embed_image_positions.weight"]):
            num_posids_to_add = len(self.state_dict()["embed_image_positions.weight"]) - len(state_dict["decoder.embed_image_positions.weight"])
            embed_dim = state_dict["decoder.embed_image_positions.weight"].size(1)
            new_pos_embed_to_add = torch.zeros(num_posids_to_add, embed_dim)
            nn.init.normal_(new_pos_embed_to_add, mean=0, std=embed_dim ** -0.5)
            new_pos_embed_to_add = new_pos_embed_to_add.to(
                dtype=state_dict["decoder.embed_image_positions.weight"].dtype,
            )
            state_dict["decoder.embed_image_positions.weight"] = torch.cat(
                [state_dict["decoder.embed_image_positions.weight"], new_pos_embed_to_add]
            )
        return state_dict


def Embedding(num_embeddings, embedding_dim, padding_idx=None, zero_init=False):
    m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
    nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
    if padding_idx is not None:
        nn.init.constant_(m.weight[padding_idx], 0)
    if zero_init:
        nn.init.constant_(m.weight, 0)
    return m


def Linear(in_features, out_features, bias=True):
    m = nn.Linear(in_features, out_features, bias)
    nn.init.xavier_uniform_(m.weight)
    if bias:
        nn.init.constant_(m.bias, 0.0)
    return m


@register_model_architecture("unify_transformer", "unify_transformer")
def base_architecture(args):
    args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
    args.encoder_layers = getattr(args, "encoder_layers", 6)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
    args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
    args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
    args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
    args.decoder_ffn_embed_dim = getattr(
        args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
    )
    args.decoder_layers = getattr(args, "decoder_layers", 6)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
    args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
    args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
    args.attention_dropout = getattr(args, "attention_dropout", 0.0)
    args.activation_dropout = getattr(args, "activation_dropout", 0.0)
    args.activation_fn = getattr(args, "activation_fn", "relu")
    args.dropout = getattr(args, "dropout", 0.1)
    args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
    args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
    args.share_decoder_input_output_embed = getattr(
        args, "share_decoder_input_output_embed", False
    )
    args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
    args.no_token_positional_embeddings = getattr(
        args, "no_token_positional_embeddings", False
    )
    args.adaptive_input = getattr(args, "adaptive_input", False)
    args.no_cross_attention = getattr(args, "no_cross_attention", False)
    args.cross_self_attention = getattr(args, "cross_self_attention", False)

    args.decoder_output_dim = getattr(
        args, "decoder_output_dim", args.decoder_embed_dim
    )
    args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)

    args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
    args.layernorm_embedding = getattr(args, "layernorm_embedding", False)
    args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False)
    args.checkpoint_activations = getattr(args, "checkpoint_activations", False)
    args.offload_activations = getattr(args, "offload_activations", False)
    if args.offload_activations:
        args.checkpoint_activations = True
    args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None)
    args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None)
    args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0)
    args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0)
    args.quant_noise_pq = getattr(args, "quant_noise_pq", 0)
    args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8)
    args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0)