Spaces:
Runtime error
Runtime error
File size: 2,972 Bytes
8437114 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
# Deep Transformers with Latent Depth (Li et al., 2020)
[https://arxiv.org/abs/2009.13102](https://arxiv.org/abs/2009.13102).
## Introduction
We present a probabilistic framework to automatically learn which layer(s) to use by learning the posterior distributions of layer selection. As an extension of this framework, we propose a novel method to train one shared Transformer network for multilingual machine translation with different layer selection posteriors for each language pair.
## Training a multilingual model with latent depth
Below is an example of training with latent depth in decoder for one-to-many (O2M) related languages. We use the same preprocessed (numberized and binarized) TED8 dataset as in [Balancing Training for Multilingual Neural Machine Translation (Wang et al., 2020)](https://github.com/cindyxinyiwang/multiDDS), which could be generated by [the script](https://github.com/cindyxinyiwang/multiDDS/blob/multiDDS/util_scripts/prepare_multilingual_data.sh) the author provided.
```bash
lang_pairs_str="eng-aze,eng-bel,eng-ces,eng-glg,eng-por,eng-rus,eng-slk,eng-tur"
databin_dir=<path to binarized data>
fairseq-train ${databin_dir} \
--user-dir examples/latent_depth/latent_depth_src \
--lang-pairs "${lang_pairs_str}" \
--arch multilingual_transformer_iwslt_de_en \
--task multilingual_translation_latent_depth \
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
--share-encoders \
--share-decoders \
--decoder-langtok \
--share-decoder-input-output-embed \
--dropout 0.3 --attention-dropout 0.3 \
--optimizer adam --adam-eps 1e-06 --adam-betas '(0.9, 0.98)' \
--lr-scheduler inverse_sqrt --stop-min-lr 1e-9 --warmup-init-lr 1e-7 --warmup-updates 8000 \
--max-tokens 4096 --update-freq 1 \
--lr 0.0015 \
--clip-norm 1.0 \
--seed 2 \
--ddp-backend=legacy_ddp \
--encoder-layers 12 \
--decoder-layers 24 \
--decoder-latent-layer \
--sparsity-weight 0.1 \
--anneal-updates 5000 \
--soft-update 500 \
--target-layers 12 \
--share-weight 0.1
```
## Inference command
```bash
lang_pairs_str="eng-aze,eng-bel,eng-ces,eng-glg,eng-por,eng-rus,eng-slk,eng-tur"
databin_dir=<path to binarized data>
model_path=<path to checkpoint>
src_lang=<source language to translate from>
tgt_lang=<target language to translate to>
gen_data=<name of data split, e.g. valid, test, etc>
fairseq-generate ${databin_dir} \
--path ${model_path} \
--task multilingual_translation_latent_depth \
--decoder-latent-layer \
--lang-pairs "${lang_pairs_str}" \
-s ${src_lang} -t ${tgt_lang} \
--gen-subset $gen_data \
--scoring sacrebleu \
--remove-bpe 'sentencepiece' \
--lenpen 1.0 \
--beam 5 \
--decoder-langtok \
--max-tokens 4096
```
## Citation
```bibtex
@article{li2020deep,
title={Deep Transformers with Latent Depth},
author={Li, Xian and Stickland, Asa Cooper and Tang, Yuqing and Kong, Xiang},
journal={arXiv preprint arXiv:2009.13102},
year={2020}
}
```
|