Spaces:
Runtime error
Runtime error
File size: 5,247 Bytes
8437114 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# Megatron-11b
Megatron-11b is a unidirectional language model with `11B` parameters based on [Megatron-LM](https://arxiv.org/pdf/1909.08053.pdf). Following the original Megatron work, we trained the model using intra-layer model parallelism with each layer's parameters split across 8 GPUs.
Megatron-11b is trained on the same data and uses the same byte-pair encoding (BPE) as [RoBERTa](https://arxiv.org/pdf/1907.11692.pdf).
## Pre-trained models
Model | Description | # params | # filesize | Download
---|---|---|---|---
`megatron_11b` | megatron_11b unidirectional language model | 11B | 19Gb | [megatron_11b.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/model_parallel/megatron_11b.tar.gz)
#### Architecture:
Param | Value
---|---
embed_dim | 3072
ffn_dim | 3072 * 6
layers | 72
attention heads | 32
#### Training details:
Param | value
---|---
bsz | 512
num_updates | 300,000
peak_lr | 1.5e-04
lr scheduler | inverse_sqrt
clip norm | 0.0
## Example training command (model parallel)
Megatron-11b contains too many parameters to train on a single GPU. Following
the original Megatron work, we adopt an intra-layer model parallel training
approach in which each layer's parameters are split across multiple GPUs and
activations and gradients are communicated during the forward/backward pass,
respectively. We similarly split the loss computation using the
`vocab_parallel_cross_entropy` criterion.
The following training command illustrates how to do model parallel training in
fairseq. We assume that each machine (node) has 8 GPUs among which to split the
model parameters (`--model-parallel-size 8`). If you have access to multiple
nodes, you may combine this with data parallel training by increasing
`--distributed-world-size`.
To train Megatron-11b on a single node:
```bash
fairseq-train <DATA_PATH> \
--distributed-world-size 8 \
--memory-efficient-fp16 \
--num-workers 2 \
--model-parallel-size 8 \
--criterion vocab_parallel_cross_entropy \
--task language_modeling \
--sample-break-mode none \
--tokens-per-sample 1024 \
--arch transformer_lm_megatron_11b \
--share-decoder-input-output-embed \
--optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-08 --clip-norm 0.0 \
--lr-scheduler inverse_sqrt --lr 0.00015 \
--warmup-updates 3000 --weight-decay 0.01 \
--dropout 0.1 --attention-dropout 0.1 \
--batch-size 2 \
--max-update 300000;
```
Note: Above was tested on `DGX-1` box, with `8xV100-32Gb` GPUs.
## Results
**[Wikitext103](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/)**
Model | Valid perplexity | Test perplexity
---|---|---
`megatron_11b` | 10.64 | 10.54
## Evaluating `megatron_11b` on Wikitext-103
#### 1. Downloading Megatron-11b
```bash
# WARNING: this file is 19GB
wget https://dl.fbaipublicfiles.com/fairseq/models/model_parallel/megatron_11b.tar.gz
tar -xzvf megatron_11b.tar.gz
```
#### 2. Download Wikitext-103
```bash
wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip
unzip wikitext-103-raw-v1.zip
```
#### 3. Detokenize test tokens
Megatron-11b uses a byte-level BPE that expects raw (untokenized) input. Since
the wikitext-103 dataset comes tokenized, we apply a simple detokenization
process to restore the untokenized test set:
```bash
python -m examples.megatron_11b.detok wikitext-103-raw/wiki.test.raw > wikitext-103-raw/wiki.test.detok
```
#### 4. BPE encoding
```bash
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json'
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe'
python -m examples.roberta.multiprocessing_bpe_encoder \
--encoder-json encoder.json \
--vocab-bpe vocab.bpe \
--inputs "wikitext-103-raw/wiki.test.detok" \
--outputs "wikitext-103-raw/wiki.test.bpe" \
--workers 60;
```
#### 5. Fairseq binarize
```bash
fairseq-preprocess \
--only-source \
--testpref wikitext-103-raw/wiki.test.bpe \
--srcdict megatron_11b/dict.txt \
--destdir wikitext103-bin;
```
#### 6. Evaluating perplexity.
We can now evaluate perplexity on the test set. Note that because we've modified
the test set (via detokenization and BPE), the perplexity reported by
`fairseq-eval-lm` needs to be renormalized.
Compute unnormalized perplexity:
```bash
DATA_PATH=wikitext103-bin/
fairseq-eval-lm \
$DATA_PATH \
--path megatron_11b/model.pt \
--task language_modeling \
--gen-subset test \
--batch-size 8 \
--criterion cross_entropy \
--context-window 992 \
--distributed-world-size 8 \
--model-parallel-size 8;
# Expected PPL (unnormalized_ppl): [8.46]
# Note: the eval command needs to run on 8 GPUs for the released model
```
Renormalizing formula: `2 ^ ( log_2(unnormalized_PPL) * (270847 / 245566))`.
PPL After normalization: `10.54`
To renormalize the perplexity, we must account for the change in token count
after detokenizing and appling BPE. The formula for this is:
`2 ^ ( log_2(unnormalized_PPL) * (new_token_cnt / orig_token_cnt))`
For the wikitext-103 test set, the original token count is `245566` and the
token count after detokenization and applying BPE is `270847`.
The perplexity after renormalization is:
`2 ^ ( log_2(8.46) * (270847 / 245566)) = 10.54`
|