File size: 4,651 Bytes
8437114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#!/usr/bin/env zsh
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

lg=$1
text_path=$2
target_dir=$3
min_phones=$4
phonemizer=$5
lid_path=$6

if [ -z "$lid_path" ]; then
  lid_path="lid.187.bin"
fi

ph_lg=${lg:l}
if test "$lg" = 'fr'; then
  ph_lg='fr-fr'
elif test "$lg" = 'en'; then
  ph_lg='en-us'
elif test "$lg" = 'pt'; then
  ph_lg='pt-br'
fi

ESPEAK_PATH=''
if test "$phonemizer" = 'espeak'; then
  ESPEAK_PATH=$(which espeak)
elif test "$phonemizer" = 'espeak-ng'; then
  ESPEAK_PATH=$(which espeak-ng)
elif test "$phonemizer" = 'G2P'; then
  ESPEAK_PATH=''
else
  echo "Unknown phonemizer $phonemizer. Valid options are espeak, espean-ng and G2P"
  exit 1
fi

echo $lg
echo $ph_lg
echo $text_path
echo $target_dir
echo "min phone seen threshold is $min_phones"

mkdir -p $target_dir
python $FAIRSEQ_ROOT/examples/wav2vec/unsupervised/scripts/normalize_and_filter_text.py --lang $lg --fasttext-model $lid_path < $text_path | grep -v '\-\-\-' >! $target_dir/lm.upper.lid.txt
python $FAIRSEQ_ROOT/fairseq_cli/preprocess.py --dataset-impl mmap --trainpref $target_dir/lm.upper.lid.txt --only-source --destdir $target_dir --thresholdsrc 2 --padding-factor 1 --dict-only
cut -f1 -d' ' $target_dir/dict.txt | grep -v -x '[[:punct:]]*' | grep -Pv '\d\d\d\d\d+' >! $target_dir/words.txt


if [ -z "$ESPEAK_PATH" ]; then
  python $FAIRSEQ_ROOT/examples/wav2vec/unsupervised/scripts/g2p_wrd_to_phn.py --compact < $target_dir/words.txt > $target_dir/phones.txt
else
  # echoing 1 into corpus will prevent the mismatch lines between lexicon and phones in case the phonemizer fails
  one=$(echo "1" | PHONEMIZER_ESPEAK_PATH=$ESPEAK_PATH phonemize -p ' ' -w '' -l $ph_lg --language-switch remove-flags)
  sed 's/$/ 1/' $target_dir/words.txt | PHONEMIZER_ESPEAK_PATH=$ESPEAK_PATH phonemize -o $target_dir/phones.txt -p ' ' -w '' -l $ph_lg -j 70 --language-switch remove-flags
  echo "one is ${one}"
  sed -i "s/${one}$//" $target_dir/phones.txt
fi

paste $target_dir/words.txt $target_dir/phones.txt >! $target_dir/lexicon.lst

python $FAIRSEQ_ROOT/fairseq_cli/preprocess.py --dataset-impl mmap --trainpref $target_dir/phones.txt --only-source --destdir $target_dir/phones --thresholdsrc $min_phones --padding-factor 1 --dict-only

python $FAIRSEQ_ROOT/examples/wav2vec/unsupervised/scripts/filter_lexicon.py -d $target_dir/phones/dict.txt < $target_dir/lexicon.lst >! $target_dir/lexicon_filtered.lst
python $FAIRSEQ_ROOT/examples/wav2vec/unsupervised/scripts/phonemize_with_sil.py -s 0.25 --surround --lexicon $target_dir/lexicon_filtered.lst < $target_dir/lm.upper.lid.txt >! $target_dir/phones/lm.phones.filtered.txt
cp $target_dir/phones/dict.txt $target_dir/phones/dict.phn.txt
echo "<SIL> 0" >> $target_dir/phones/dict.phn.txt
python $FAIRSEQ_ROOT/fairseq_cli/preprocess.py --dataset-impl mmap --trainpref $target_dir/phones/lm.phones.filtered.txt --workers 70 --only-source --destdir $target_dir/phones --srcdict $target_dir/phones/dict.phn.txt

$KENLM_ROOT/lmplz -o 4 < $target_dir/lm.upper.lid.txt --discount_fallback --prune 0 0 0 3 >! $target_dir/kenlm.wrd.o40003.arpa
$KENLM_ROOT/build_binary $target_dir/kenlm.wrd.o40003.arpa $target_dir/kenlm.wrd.o40003.bin

lg=$lg python $FAIRSEQ_ROOT/examples/speech_recognition/kaldi/kaldi_initializer.py kaldi_root=$KALDI_ROOT fst_dir=$target_dir/fst/phn_to_words_sil lm_arpa=$target_dir/kenlm.wrd.o40003.arpa wav2letter_lexicon=$target_dir/lexicon_filtered.lst data_dir=$target_dir/phones in_labels=phn "blank_symbol='<SIL>'"
lg=$lg python $FAIRSEQ_ROOT/examples/speech_recognition/kaldi/kaldi_initializer.py kaldi_root=$KALDI_ROOT fst_dir=$target_dir/fst/phn_to_words lm_arpa=$target_dir/kenlm.wrd.o40003.arpa wav2letter_lexicon=$target_dir/lexicon_filtered.lst data_dir=$target_dir/phones in_labels=phn

$KENLM_ROOT/lmplz -o 4 < $target_dir/phones/lm.phones.filtered.txt --discount_fallback >! $target_dir/phones/lm.phones.filtered.04.arpa
$KENLM_ROOT/build_binary $target_dir/phones/lm.phones.filtered.04.arpa $target_dir/phones/lm.phones.filtered.04.bin
$KENLM_ROOT/lmplz -o 6 < $target_dir/phones/lm.phones.filtered.txt --discount_fallback >! $target_dir/phones/lm.phones.filtered.06.arpa
$KENLM_ROOT/build_binary $target_dir/phones/lm.phones.filtered.06.arpa $target_dir/phones/lm.phones.filtered.06.bin

lg=$lg python $FAIRSEQ_ROOT/examples/speech_recognition/kaldi/kaldi_initializer.py kaldi_root=$KALDI_ROOT fst_dir=$target_dir/fst/phn_to_phn_sil lm_arpa=$target_dir/phones/lm.phones.filtered.06.arpa data_dir=$target_dir/phones in_labels=phn "blank_symbol='<SIL>'"