Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
from io import BytesIO | |
import logging | |
import warnings | |
import string | |
import numpy as np | |
import torch | |
import base64 | |
from torchvision import transforms | |
from PIL import Image, ImageFile | |
from data import data_utils | |
from data.ofa_dataset import OFADataset | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
ImageFile.MAX_IMAGE_PIXELS = None | |
Image.MAX_IMAGE_PIXELS = None | |
logger = logging.getLogger(__name__) | |
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning) | |
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) | |
def collate(samples, pad_idx, eos_idx): | |
if len(samples) == 0: | |
return {} | |
def merge(key): | |
return data_utils.collate_tokens( | |
[s[key] for s in samples], | |
pad_idx, | |
eos_idx=eos_idx, | |
) | |
id = np.array([s["id"] for s in samples]) | |
src_tokens = merge("source") | |
src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples]) | |
patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0) | |
patch_masks = torch.cat([sample['patch_mask'] for sample in samples]) | |
prev_output_tokens = None | |
target = None | |
if samples[0].get("target", None) is not None: | |
target = merge("target") | |
tgt_lengths = torch.LongTensor([s["target"].ne(pad_idx).long().sum() for s in samples]) | |
ntokens = tgt_lengths.sum().item() | |
if samples[0].get("prev_output_tokens", None) is not None: | |
prev_output_tokens = merge("prev_output_tokens") | |
else: | |
ntokens = src_lengths.sum().item() | |
batch = { | |
"id": id, | |
"nsentences": len(samples), | |
"ntokens": ntokens, | |
"net_input": { | |
"src_tokens": src_tokens, | |
"src_lengths": src_lengths, | |
"patch_images": patch_images, | |
"patch_masks": patch_masks, | |
"prev_output_tokens": prev_output_tokens | |
}, | |
"target": target, | |
} | |
return batch | |
class CaptionDataset(OFADataset): | |
def __init__( | |
self, | |
split, | |
dataset, | |
bpe, | |
src_dict, | |
tgt_dict=None, | |
max_src_length=128, | |
max_tgt_length=30, | |
patch_image_size=224, | |
imagenet_default_mean_and_std=False, | |
scst=False | |
): | |
self.split = split | |
self.dataset = dataset | |
self.bpe = bpe | |
self.src_dict = src_dict | |
self.tgt_dict = tgt_dict | |
self.max_src_length = max_src_length | |
self.max_tgt_length = max_tgt_length | |
self.patch_image_size = patch_image_size | |
self.scst = scst | |
self.bos = src_dict.bos() | |
self.eos = src_dict.eos() | |
self.pad = src_dict.pad() | |
self.bos_item = torch.LongTensor([self.bos]) | |
self.eos_item = torch.LongTensor([self.eos]) | |
self.transtab = str.maketrans({key: None for key in string.punctuation}) | |
if imagenet_default_mean_and_std: | |
mean = IMAGENET_DEFAULT_MEAN | |
std = IMAGENET_DEFAULT_STD | |
else: | |
mean = [0.5, 0.5, 0.5] | |
std = [0.5, 0.5, 0.5] | |
self.patch_resize_transform = transforms.Compose([ | |
lambda image: image.convert("RGB"), | |
transforms.Resize((patch_image_size, patch_image_size), interpolation=Image.BICUBIC), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=mean, std=std), | |
]) | |
def __getitem__(self, index): | |
uniq_id, image, caption = self.dataset[index] | |
image = Image.open(BytesIO(base64.urlsafe_b64decode(image))) | |
patch_image = self.patch_resize_transform(image) | |
patch_mask = torch.tensor([True]) | |
if self.split == 'train' and not self.scst: | |
caption = caption.translate(self.transtab).strip() | |
caption_token_list = caption.strip().split() | |
tgt_caption = ' '.join(caption_token_list[:self.max_tgt_length]) | |
else: | |
caption = ' '.join(caption.strip().split()) | |
caption_list = [cap.translate(self.transtab).strip() for cap in caption.strip().split('&&')] | |
tgt_caption = '&&'.join(caption_list) | |
src_item = self.encode_text(" what does the image describe?") | |
tgt_item = self.encode_text(" {}".format(tgt_caption)) | |
src_item = torch.cat([self.bos_item, src_item, self.eos_item]) | |
target_item = torch.cat([tgt_item, self.eos_item]) | |
prev_output_item = torch.cat([self.bos_item, tgt_item]) | |
example = { | |
"id": uniq_id, | |
"source": src_item, | |
"patch_image": patch_image, | |
"patch_mask": patch_mask, | |
"target": target_item, | |
"prev_output_tokens": prev_output_item | |
} | |
return example | |
def collater(self, samples, pad_to_length=None): | |
"""Merge a list of samples to form a mini-batch. | |
Args: | |
samples (List[dict]): samples to collate | |
Returns: | |
dict: a mini-batch with the following keys: | |
""" | |
return collate(samples, pad_idx=self.pad, eos_idx=self.eos) |