JustinLin610
update
8437114

A newer version of the Gradio SDK is available: 5.7.1

Upgrade

Fine-tuning details

For each task (GLUE and PAWS), we perform hyperparam search for each model, and report the mean and standard deviation across 5 seeds of the best model. First, get the datasets following the instructions in RoBERTa fine-tuning README. Alternatively, you can use huggingface datasets to get the task data:

from datasets import load_dataset
import pandas as pd
from pathlib import Path

key2file = {
"paws": {
        "loc": "paws_data",
        "columns": ["id", "sentence1", "sentence2", "label"],
        "train": "train.tsv",
        "validation": "dev.tsv",
        "test": "test.tsv"
  }
}

task_data = load_dataset("paws", "labeled_final")
task_config = key2file["paws"]
save_path = Path(task_config["loc"])
save_path.mkdir(exist_ok=True, parents=True)
for key, fl in task_config.items():
    if key in ["loc", "columns"]:
        continue
    print(f"Reading {key}")
    columns = task_config["columns"]
    df = pd.DataFrame(task_data[key])
    print(df.columns)
    df = df[columns]
    print(f"Got {len(df)} records")
    save_loc = save_path / fl
    print(f"Saving to : {save_loc}")
    df.to_csv(save_loc, sep="\t", header=None, index=None)
  • Preprocess using RoBERTa GLUE preprocessing script, while keeping in mind the column numbers for sentence1, sentence2 and label (which is 0,1,2 if you save the data according to the above example.)
  • Then, fine-tuning is performed similarly to RoBERTa (for example, in case of RTE):
TOTAL_NUM_UPDATES=30875  # 10 epochs through RTE for bsz 16
WARMUP_UPDATES=1852      # 6 percent of the number of updates
LR=2e-05                # Peak LR for polynomial LR scheduler.
NUM_CLASSES=2
MAX_SENTENCES=16        # Batch size.
SHUFFLED_ROBERTA_PATH=/path/to/shuffled_roberta/model.pt

CUDA_VISIBLE_DEVICES=0 fairseq-train RTE-bin/ \
    --restore-file $SHUFFLED_ROBERTA_PATH \
    --max-positions 512 \
    --batch-size $MAX_SENTENCES \
    --max-tokens 4400 \
    --task sentence_prediction \
    --reset-optimizer --reset-dataloader --reset-meters \
    --required-batch-size-multiple 1 \
    --init-token 0 --separator-token 2 \
    --arch roberta_large \
    --criterion sentence_prediction \
    --num-classes $NUM_CLASSES \
    --dropout 0.1 --attention-dropout 0.1 \
    --weight-decay 0.1 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 \
    --clip-norm 0.0 \
    --lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \
    --fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \
    --max-epoch 10 \
    --find-unused-parameters \
    --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric;
  • TOTAL_NUM_UPDATES is computed based on the --batch_size value and the dataset size.
  • WARMUP_UPDATES is computed as 6% of TOTAL_NUM_UPDATES
  • Best hyperparam of --lr and --batch_size is reported below:

--lr

name RTE MRPC SST-2 CoLA QQP QNLI MNLI PAWS
0 original 2e-05 2e-05 1e-05 2e-05 1e-05 1e-05 1e-05 2e-05
1 n_1 2e-05 1e-05 1e-05 1e-05 3e-05 1e-05 2e-05 2e-05
2 n_2 2e-05 2e-05 1e-05 1e-05 2e-05 1e-05 1e-05 3e-05
3 n_3 3e-05 1e-05 2e-05 2e-05 3e-05 1e-05 1e-05 2e-05
4 n_4 3e-05 1e-05 2e-05 2e-05 2e-05 1e-05 1e-05 2e-05
5 r512 1e-05 3e-05 2e-05 2e-05 3e-05 2e-05 3e-05 2e-05
6 rand_corpus 2e-05 1e-05 3e-05 1e-05 3e-05 3e-05 3e-05 2e-05
7 rand_uniform 2e-05 1e-05 3e-05 2e-05 3e-05 3e-05 3e-05 1e-05
8 rand_init 1e-05 1e-05 3e-05 1e-05 1e-05 1e-05 2e-05 1e-05
9 no_pos 1e-05 3e-05 2e-05 1e-05 1e-05 1e-05 1e-05 1e-05

--batch_size

name RTE MRPC SST-2 CoLA QQP QNLI MNLI PAWS
0 orig 16 16 32 16 16 32 32 16
1 n_1 32 32 16 32 32 16 32 16
2 n_2 32 16 32 16 32 32 16 32
3 n_3 32 32 16 32 32 16 32 32
4 n_4 32 16 32 16 32 32 32 32
5 r512 32 16 16 32 32 16 16 16
6 rand_corpus 16 16 16 16 32 16 16 32
7 rand_uniform 16 32 16 16 32 16 16 16
8 rand_init 16 16 32 16 16 16 32 16
9 no_pos 16 32 16 16 32 16 16 16
  • Perform inference similar to RoBERTa as well:
from fairseq.models.roberta import RobertaModel

roberta = RobertaModel.from_pretrained(
    'checkpoints/',
    checkpoint_file='checkpoint_best.pt',
    data_name_or_path='PAWS-bin'
)

label_fn = lambda label: roberta.task.label_dictionary.string(
    [label + roberta.task.label_dictionary.nspecial]
)
ncorrect, nsamples = 0, 0
roberta.cuda()
roberta.eval()
with open('paws_data/dev.tsv') as fin:
    fin.readline()
    for index, line in enumerate(fin):
        tokens = line.strip().split('\t')
        sent1, sent2, target = tokens[0], tokens[1], tokens[2]
        tokens = roberta.encode(sent1, sent2)
        prediction = roberta.predict('sentence_classification_head', tokens).argmax().item()
        prediction_label = label_fn(prediction)
        ncorrect += int(prediction_label == target)
        nsamples += 1
print('| Accuracy: ', float(ncorrect)/float(nsamples))