Spaces:
Runtime error
Runtime error
File size: 11,842 Bytes
ee21b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import absolute_import, division, print_function, unicode_literals
import re
from collections import deque
from enum import Enum
import numpy as np
"""
Utility modules for computation of Word Error Rate,
Alignments, as well as more granular metrics like
deletion, insersion and substitutions.
"""
class Code(Enum):
match = 1
substitution = 2
insertion = 3
deletion = 4
class Token(object):
def __init__(self, lbl="", st=np.nan, en=np.nan):
if np.isnan(st):
self.label, self.start, self.end = "", 0.0, 0.0
else:
self.label, self.start, self.end = lbl, st, en
class AlignmentResult(object):
def __init__(self, refs, hyps, codes, score):
self.refs = refs # std::deque<int>
self.hyps = hyps # std::deque<int>
self.codes = codes # std::deque<Code>
self.score = score # float
def coordinate_to_offset(row, col, ncols):
return int(row * ncols + col)
def offset_to_row(offset, ncols):
return int(offset / ncols)
def offset_to_col(offset, ncols):
return int(offset % ncols)
def trimWhitespace(str):
return re.sub(" +", " ", re.sub(" *$", "", re.sub("^ *", "", str)))
def str2toks(str):
pieces = trimWhitespace(str).split(" ")
toks = []
for p in pieces:
toks.append(Token(p, 0.0, 0.0))
return toks
class EditDistance(object):
def __init__(self, time_mediated):
self.time_mediated_ = time_mediated
self.scores_ = np.nan # Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic>
self.backtraces_ = (
np.nan
) # Eigen::Matrix<size_t, Eigen::Dynamic, Eigen::Dynamic> backtraces_;
self.confusion_pairs_ = {}
def cost(self, ref, hyp, code):
if self.time_mediated_:
if code == Code.match:
return abs(ref.start - hyp.start) + abs(ref.end - hyp.end)
elif code == Code.insertion:
return hyp.end - hyp.start
elif code == Code.deletion:
return ref.end - ref.start
else: # substitution
return abs(ref.start - hyp.start) + abs(ref.end - hyp.end) + 0.1
else:
if code == Code.match:
return 0
elif code == Code.insertion or code == Code.deletion:
return 3
else: # substitution
return 4
def get_result(self, refs, hyps):
res = AlignmentResult(refs=deque(), hyps=deque(), codes=deque(), score=np.nan)
num_rows, num_cols = self.scores_.shape
res.score = self.scores_[num_rows - 1, num_cols - 1]
curr_offset = coordinate_to_offset(num_rows - 1, num_cols - 1, num_cols)
while curr_offset != 0:
curr_row = offset_to_row(curr_offset, num_cols)
curr_col = offset_to_col(curr_offset, num_cols)
prev_offset = self.backtraces_[curr_row, curr_col]
prev_row = offset_to_row(prev_offset, num_cols)
prev_col = offset_to_col(prev_offset, num_cols)
res.refs.appendleft(curr_row - 1) # Note: this was .push_front() in C++
res.hyps.appendleft(curr_col - 1)
if curr_row - 1 == prev_row and curr_col == prev_col:
res.codes.appendleft(Code.deletion)
elif curr_row == prev_row and curr_col - 1 == prev_col:
res.codes.appendleft(Code.insertion)
else:
# assert(curr_row - 1 == prev_row and curr_col - 1 == prev_col)
ref_str = refs[res.refs[0]].label
hyp_str = hyps[res.hyps[0]].label
if ref_str == hyp_str:
res.codes.appendleft(Code.match)
else:
res.codes.appendleft(Code.substitution)
confusion_pair = "%s -> %s" % (ref_str, hyp_str)
if confusion_pair not in self.confusion_pairs_:
self.confusion_pairs_[confusion_pair] = 1
else:
self.confusion_pairs_[confusion_pair] += 1
curr_offset = prev_offset
return res
def align(self, refs, hyps):
if len(refs) == 0 and len(hyps) == 0:
return np.nan
# NOTE: we're not resetting the values in these matrices because every value
# will be overridden in the loop below. If this assumption doesn't hold,
# be sure to set all entries in self.scores_ and self.backtraces_ to 0.
self.scores_ = np.zeros((len(refs) + 1, len(hyps) + 1))
self.backtraces_ = np.zeros((len(refs) + 1, len(hyps) + 1))
num_rows, num_cols = self.scores_.shape
for i in range(num_rows):
for j in range(num_cols):
if i == 0 and j == 0:
self.scores_[i, j] = 0.0
self.backtraces_[i, j] = 0
continue
if i == 0:
self.scores_[i, j] = self.scores_[i, j - 1] + self.cost(
None, hyps[j - 1], Code.insertion
)
self.backtraces_[i, j] = coordinate_to_offset(i, j - 1, num_cols)
continue
if j == 0:
self.scores_[i, j] = self.scores_[i - 1, j] + self.cost(
refs[i - 1], None, Code.deletion
)
self.backtraces_[i, j] = coordinate_to_offset(i - 1, j, num_cols)
continue
# Below here both i and j are greater than 0
ref = refs[i - 1]
hyp = hyps[j - 1]
best_score = self.scores_[i - 1, j - 1] + (
self.cost(ref, hyp, Code.match)
if (ref.label == hyp.label)
else self.cost(ref, hyp, Code.substitution)
)
prev_row = i - 1
prev_col = j - 1
ins = self.scores_[i, j - 1] + self.cost(None, hyp, Code.insertion)
if ins < best_score:
best_score = ins
prev_row = i
prev_col = j - 1
delt = self.scores_[i - 1, j] + self.cost(ref, None, Code.deletion)
if delt < best_score:
best_score = delt
prev_row = i - 1
prev_col = j
self.scores_[i, j] = best_score
self.backtraces_[i, j] = coordinate_to_offset(
prev_row, prev_col, num_cols
)
return self.get_result(refs, hyps)
class WERTransformer(object):
def __init__(self, hyp_str, ref_str, verbose=True):
self.ed_ = EditDistance(False)
self.id2oracle_errs_ = {}
self.utts_ = 0
self.words_ = 0
self.insertions_ = 0
self.deletions_ = 0
self.substitutions_ = 0
self.process(["dummy_str", hyp_str, ref_str])
if verbose:
print("'%s' vs '%s'" % (hyp_str, ref_str))
self.report_result()
def process(self, input): # std::vector<std::string>&& input
if len(input) < 3:
print(
"Input must be of the form <id> ... <hypo> <ref> , got ",
len(input),
" inputs:",
)
return None
# Align
# std::vector<Token> hyps;
# std::vector<Token> refs;
hyps = str2toks(input[-2])
refs = str2toks(input[-1])
alignment = self.ed_.align(refs, hyps)
if alignment is None:
print("Alignment is null")
return np.nan
# Tally errors
ins = 0
dels = 0
subs = 0
for code in alignment.codes:
if code == Code.substitution:
subs += 1
elif code == Code.insertion:
ins += 1
elif code == Code.deletion:
dels += 1
# Output
row = input
row.append(str(len(refs)))
row.append(str(ins))
row.append(str(dels))
row.append(str(subs))
# print(row)
# Accumulate
kIdIndex = 0
kNBestSep = "/"
pieces = input[kIdIndex].split(kNBestSep)
if len(pieces) == 0:
print(
"Error splitting ",
input[kIdIndex],
" on '",
kNBestSep,
"', got empty list",
)
return np.nan
id = pieces[0]
if id not in self.id2oracle_errs_:
self.utts_ += 1
self.words_ += len(refs)
self.insertions_ += ins
self.deletions_ += dels
self.substitutions_ += subs
self.id2oracle_errs_[id] = [ins, dels, subs]
else:
curr_err = ins + dels + subs
prev_err = np.sum(self.id2oracle_errs_[id])
if curr_err < prev_err:
self.id2oracle_errs_[id] = [ins, dels, subs]
return 0
def report_result(self):
# print("---------- Summary ---------------")
if self.words_ == 0:
print("No words counted")
return
# 1-best
best_wer = (
100.0
* (self.insertions_ + self.deletions_ + self.substitutions_)
/ self.words_
)
print(
"\tWER = %0.2f%% (%i utts, %i words, %0.2f%% ins, "
"%0.2f%% dels, %0.2f%% subs)"
% (
best_wer,
self.utts_,
self.words_,
100.0 * self.insertions_ / self.words_,
100.0 * self.deletions_ / self.words_,
100.0 * self.substitutions_ / self.words_,
)
)
def wer(self):
if self.words_ == 0:
wer = np.nan
else:
wer = (
100.0
* (self.insertions_ + self.deletions_ + self.substitutions_)
/ self.words_
)
return wer
def stats(self):
if self.words_ == 0:
stats = {}
else:
wer = (
100.0
* (self.insertions_ + self.deletions_ + self.substitutions_)
/ self.words_
)
stats = dict(
{
"wer": wer,
"utts": self.utts_,
"numwords": self.words_,
"ins": self.insertions_,
"dels": self.deletions_,
"subs": self.substitutions_,
"confusion_pairs": self.ed_.confusion_pairs_,
}
)
return stats
def calc_wer(hyp_str, ref_str):
t = WERTransformer(hyp_str, ref_str, verbose=0)
return t.wer()
def calc_wer_stats(hyp_str, ref_str):
t = WERTransformer(hyp_str, ref_str, verbose=0)
return t.stats()
def get_wer_alignment_codes(hyp_str, ref_str):
"""
INPUT: hypothesis string, reference string
OUTPUT: List of alignment codes (intermediate results from WER computation)
"""
t = WERTransformer(hyp_str, ref_str, verbose=0)
return t.ed_.align(str2toks(ref_str), str2toks(hyp_str)).codes
def merge_counts(x, y):
# Merge two hashes which have 'counts' as their values
# This can be used for example to merge confusion pair counts
# conf_pairs = merge_counts(conf_pairs, stats['confusion_pairs'])
for k, v in y.items():
if k not in x:
x[k] = 0
x[k] += v
return x
|