Spaces:
Runtime error
Runtime error
# Copyright 2022 The OFA-Sys Team. | |
# All rights reserved. | |
# This source code is licensed under the Apache 2.0 license | |
# found in the LICENSE file in the root directory. | |
from dataclasses import dataclass, field | |
import json | |
import logging | |
import os | |
import math | |
import base64 | |
from typing import Optional | |
from argparse import Namespace | |
from omegaconf import DictConfig, OmegaConf | |
from torchvision import transforms | |
from PIL import Image | |
from io import BytesIO | |
import torch | |
import numpy as np | |
from fairseq import metrics | |
from fairseq.tasks import register_task | |
from fairseq.dataclass import ChoiceEnum | |
from models import search, clip | |
from models.taming.models.vqgan import GumbelVQ | |
from data.mm_data.image_gen_dataset import ImageGenDataset | |
from data.file_dataset import FileDataset | |
from tasks.ofa_task import OFATask, OFAConfig | |
logger = logging.getLogger(__name__) | |
def custom_to_pil(x): | |
x = x.detach().cpu() | |
x = torch.clamp(x, -1., 1.) | |
x = (x + 1.) / 2. | |
x = x.permute(1, 2, 0).numpy() | |
x = (255 * x).astype(np.uint8) | |
x = Image.fromarray(x) | |
if not x.mode == "RGB": | |
x = x.convert("RGB") | |
return x | |
EVAL_CLIP_METHOD = ChoiceEnum(["ii_sim", "ti_sim"]) | |
class ImageGenConfig(OFAConfig): | |
sampling_times: int = field( | |
default=1, metadata={"help": "sample times"} | |
) | |
code_image_size: int = field( | |
default=256, metadata={"help": "code image size"} | |
) | |
# options for reporting CLIP score during validation | |
eval_clip_method: EVAL_CLIP_METHOD = field( | |
default='ti_sim', | |
metadata={ | |
"help": "evaluation with CLIP scores. ii_sim means Similarity between generated Images and ref Images, ti_sim means Similarity between generated Images and input Text"} | |
) | |
eval_args: Optional[str] = field( | |
default='{}', | |
metadata={ | |
"help": 'generation args for clip scoring, e.g., \'{"beam": 4, "lenpen": 0.6}\', as JSON string' | |
}, | |
) | |
scst: bool = field( | |
default=False, metadata={"help": "Self-critical sequence training"} | |
) | |
scst_args: str = field( | |
default='{}', | |
metadata={ | |
"help": 'generation args for Self-critical sequence training, as JSON string' | |
}, | |
) | |
vqgan_model_path: Optional[str] = field( | |
default=None, | |
metadata={"help": "path of vqgan model"} | |
) | |
vqgan_config_path: Optional[str] = field( | |
default=None, | |
metadata={"help": "path of vqgan config"} | |
) | |
clip_model_path: Optional[str] = field( | |
default=None, | |
metadata={"help": "clip model path"} | |
) | |
gen_images_path: str = field( | |
default='', metadata={"help": "where to store generated images during evalution. Don't dump images if None. "} | |
) | |
class ImageGenTask(OFATask): | |
def __init__(self, cfg: ImageGenConfig, src_dict, tgt_dict): | |
super().__init__(cfg, src_dict, tgt_dict) | |
def load_dataset(self, split, epoch=1, combine=False, **kwargs): | |
paths = self.cfg.data.split(',') | |
assert len(paths) > 0 | |
if split == 'train': | |
file_path = paths[(epoch - 1) % (len(paths) - 1)] | |
else: | |
file_path = paths[-1] | |
dataset = FileDataset(file_path, self.cfg.selected_cols) | |
self.datasets[split] = ImageGenDataset( | |
split, | |
dataset, | |
self.bpe, | |
self.src_dict, | |
self.tgt_dict, | |
max_src_length=self.cfg.max_src_length, | |
code_dict_size=self.cfg.code_dict_size, | |
code_image_size=self.cfg.code_image_size | |
) | |
def build_model(self, cfg): | |
model = super().build_model(cfg) | |
device = torch.cuda.current_device() | |
clip_model, clip_preprocess = clip.load(self.cfg.clip_model_path, device=device) | |
self.clip_model = clip_model | |
self.clip_preprocess = clip_preprocess | |
self.clip_model.to(device) | |
self.clip_model.eval() | |
vqgan_config = OmegaConf.load(self.cfg.vqgan_config_path) | |
vqgan = GumbelVQ(**vqgan_config.model.params) | |
sd = torch.load(self.cfg.vqgan_model_path, map_location="cpu")["state_dict"] | |
missing, unexpected = vqgan.load_state_dict(sd, strict=False) | |
for k, v in vqgan.named_parameters(): | |
v.requires_grad = False | |
self.image_tokenizer = vqgan | |
self.image_tokenizer.to(device) | |
self.image_tokenizer.eval() | |
gen_args = json.loads(self.cfg.eval_args) | |
self.sequence_generator = self.build_generator( | |
[model], Namespace(**gen_args) | |
) | |
if self.cfg.scst: | |
scst_args = json.loads(self.cfg.scst_args) | |
self.scst_generator = self.build_generator( | |
[model], Namespace(**scst_args) | |
) | |
return model | |
def build_generator( | |
self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None, prefix_allowed_tokens_fn=None, | |
): | |
""" | |
Build a :class:`~fairseq.SequenceGenerator` instance for this | |
task. | |
Args: | |
models (List[~fairseq.models.FairseqModel]): ensemble of models | |
args (fairseq.dataclass.configs.GenerationConfig): | |
configuration object (dataclass) for generation | |
extra_gen_cls_kwargs (Dict[str, Any]): extra options to pass | |
through to SequenceGenerator | |
prefix_allowed_tokens_fn (Callable[[int, torch.Tensor], List[int]]): | |
If provided, this function constrains the beam search to | |
allowed tokens only at each step. The provided function | |
should take 2 arguments: the batch ID (`batch_id: int`) | |
and a unidimensional tensor of token ids (`inputs_ids: | |
torch.Tensor`). It has to return a `List[int]` with the | |
allowed tokens for the next generation step conditioned | |
on the previously generated tokens (`inputs_ids`) and | |
the batch ID (`batch_id`). This argument is useful for | |
constrained generation conditioned on the prefix, as | |
described in "Autoregressive Entity Retrieval" | |
(https://arxiv.org/abs/2010.00904) and | |
https://github.com/facebookresearch/GENRE. | |
""" | |
from models.sequence_generator import SequenceGenerator | |
# Choose search strategy. Defaults to Sampling. | |
self.sampling_times = self.cfg.sampling_times | |
sampling = True # we have to use sampling instead of beam search in image generation task | |
sampling_topk = getattr(args, "sampling_topk", -1) | |
sampling_topp = getattr(args, "sampling_topp", -1.0) | |
assert sampling_topk < 0 or sampling, "--sampling-topk requires --sampling" | |
assert sampling_topp < 0 or sampling, "--sampling-topp requires --sampling" | |
search_strategy = search.Sampling( | |
self.target_dictionary, sampling_topk, sampling_topp | |
) | |
extra_gen_cls_kwargs = extra_gen_cls_kwargs or {} | |
return SequenceGenerator( | |
models, | |
self.target_dictionary, | |
beam_size=getattr(args, "beam", 5), | |
max_len_a=getattr(args, "max_len_a", 0), | |
max_len_b=getattr(args, "max_len_b", 200), | |
min_len=getattr(args, "min_len", 1), | |
normalize_scores=(not getattr(args, "unnormalized", False)), | |
len_penalty=getattr(args, "lenpen", 1), | |
unk_penalty=getattr(args, "unkpen", 0), | |
temperature=getattr(args, "temperature", 1.0), | |
match_source_len=getattr(args, "match_source_len", False), | |
no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0), | |
search_strategy=search_strategy, | |
constraint_range=self.cfg.constraint_range, | |
gen_code=True, | |
**extra_gen_cls_kwargs, | |
) | |
def compute_ref_image_similarity(self, hyps, ref, device): | |
hyp_images = torch.stack( | |
[self.clip_preprocess(hyp_image) for hyp_image in hyps], dim=0 | |
).to(device) | |
ref_images = self.clip_preprocess(ref).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
hyp_image_features = self.clip_model.encode_image(hyp_images) | |
ref_image_features = self.clip_model.encode_image(ref_images) | |
hyp_image_features /= hyp_image_features.norm(dim=-1, keepdim=True) | |
ref_image_features /= ref_image_features.norm(dim=-1, keepdim=True) | |
similarity = hyp_image_features @ ref_image_features.T | |
# scores.append(similarity.max().item()) | |
sorted_score, indices = torch.sort(similarity.view(-1), descending=True) | |
return sorted_score, indices | |
def compute_text_similarity(self, hyps, text, device): | |
hyp_images = torch.stack( | |
[self.clip_preprocess(hyp_image) for hyp_image in hyps], dim=0 | |
).to(device) | |
clip_input = clip.tokenize([text]).to(device) | |
with torch.no_grad(): | |
hyp_image_features = self.clip_model.encode_image(hyp_images) | |
hyp_image_features /= hyp_image_features.norm(dim=-1, keepdim=True) | |
text_features = self.clip_model.encode_text(clip_input) | |
text_features /= text_features.norm(dim=-1, keepdim=True) | |
ti_similarity = hyp_image_features @ text_features.T | |
sorted_score, indices = torch.sort(ti_similarity.view(-1), descending=True) | |
return sorted_score, indices | |
def valid_step(self, sample, model, criterion): | |
loss, sample_size, logging_output = criterion(model, sample) | |
model.eval() | |
device = sample['target'].device | |
hyps, ref = self.inference_image(self.sequence_generator, sample, [model]) | |
scores = [] | |
tokens = sample['net_input']['src_tokens'][0].view(-1).tolist() | |
caption = self.bpe.decode(self.tgt_dict.string([token for token in tokens if token >= 4]))[ | |
38:].replace('/', '') | |
if self.cfg.eval_clip_method == 'ii_sim': | |
similarity_score, indices = self.compute_ref_image_similarity(hyps, ref, device) | |
elif self.cfg.eval_clip_method == 'ti_sim': | |
similarity_score, indices = self.compute_text_similarity(hyps, caption, device) | |
else: | |
raise ValueError("unsupported eval method.") | |
scores.append(similarity_score.max().item()) | |
sorted_hyps = [hyps[indice] for indice in indices] | |
if self.cfg.gen_images_path: | |
caption_tokens = sample['net_input']['src_tokens'][0].view(-1).tolist() | |
caption = self.bpe.decode(self.tgt_dict.string([token for token in caption_tokens if token >= 4]))[ | |
38:].replace('/', '') | |
self.dump_images(sorted_hyps, text=caption, path=os.path.join(self.cfg.gen_images_path, 'all_results')) | |
self.dump_images(sorted_hyps, text=caption, path=os.path.join(self.cfg.gen_images_path, 'top1'), topk=1) | |
logging_output["_score_sum"] = sum(scores) | |
logging_output["_score_cnt"] = len(scores) | |
return loss, sample_size, logging_output | |
def reduce_metrics(self, logging_outputs, criterion): | |
super().reduce_metrics(logging_outputs, criterion) | |
def sum_logs(key): | |
import torch | |
result = sum(log.get(key, 0) for log in logging_outputs) | |
if torch.is_tensor(result): | |
result = result.cpu() | |
return result | |
def compute_score(meters): | |
score = meters["_score_sum"].sum / meters["_score_cnt"].sum | |
score = score if isinstance(score, float) else score.item() | |
return round(score, 3) | |
if sum_logs("_score_cnt") > 0: | |
metrics.log_scalar("_score_sum", sum_logs("_score_sum")) | |
metrics.log_scalar("_score_cnt", sum_logs("_score_cnt")) | |
metrics.log_derived("score", compute_score) | |
def inference_image(self, generator, sample, models): | |
hyps, ref = [], None | |
for j in range(self.sampling_times): | |
gen_out = self.inference_step(generator, models, sample) | |
for i in range(len(gen_out)): | |
with torch.no_grad(): | |
tokens = torch.stack([item['tokens'][:-1] for item in gen_out[i]], dim=0) | |
tokens += -len(self.src_dict) + self.cfg.code_dict_size + self.cfg.num_bins | |
images = self.image_tokenizer.decode_code( | |
tokens.view(-1, self.cfg.code_image_size // 8, self.cfg.code_image_size // 8) | |
) | |
images = [custom_to_pil(image) for image in images] | |
hyps += images | |
if 'code_images' in sample: | |
ref = Image.open(BytesIO(base64.urlsafe_b64decode(sample['code_images'][0]))).convert('RGB') | |
return hyps, ref | |
def dump_images(self, images, text, path, topk=None): | |
os.makedirs(path, exist_ok=True) | |
if topk: | |
images = images[:topk] | |
for j, image in enumerate(images): | |
save_path = os.path.join(path, f'{text}_{j}.png') | |
image.save(save_path) | |