File size: 5,624 Bytes
0d735a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb2e91c
 
0d735a2
 
 
54c1afe
0d735a2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os

os.system('git clone https://github.com/pytorch/fairseq.git; cd fairseq;'
          'pip install --use-feature=in-tree-build ./; cd ..')
os.system('ls -l')

import torch
import numpy as np
import re
from fairseq import utils,tasks
from fairseq import checkpoint_utils
from fairseq import distributed_utils, options, tasks, utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from utils.zero_shot_utils import zero_shot_step
from tasks.mm_tasks.vqa_gen import VqaGenTask
from models.ofa import OFAModel
from PIL import Image
from torchvision import transforms
import gradio as gr

# Register VQA task
tasks.register_task('vqa_gen',VqaGenTask)
# turn on cuda if GPU is available
use_cuda = torch.cuda.is_available()
# use fp16 only when GPU is available
use_fp16 = False

os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/ofa_large_384.pt; '
          'mkdir -p checkpoints; mv ofa_large_384.pt checkpoints/ofa_large_384.pt')

# specify some options for evaluation
parser = options.get_generation_parser()
input_args = ["", "--task=vqa_gen", "--beam=100", "--unnormalized", "--path=checkpoints/ofa_large_384.pt", "--bpe-dir=utils/BPE"]
args = options.parse_args_and_arch(parser, input_args)
cfg = convert_namespace_to_omegaconf(args)

# Load pretrained ckpt & config
task = tasks.setup_task(cfg.task)
models, cfg = checkpoint_utils.load_model_ensemble(
    utils.split_paths(cfg.common_eval.path),
    task=task
)

# Move models to GPU
for model in models:
    model.eval()
    if use_fp16:
        model.half()
    if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
        model.cuda()
    model.prepare_for_inference_(cfg)

# Initialize generator
generator = task.build_generator(models, cfg.generation)

# Image transform
from torchvision import transforms
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]

patch_resize_transform = transforms.Compose([
    lambda image: image.convert("RGB"),
    transforms.Resize((cfg.task.patch_image_size, cfg.task.patch_image_size), interpolation=Image.BICUBIC),
    transforms.ToTensor(),
    transforms.Normalize(mean=mean, std=std),
])

# Text preprocess
bos_item = torch.LongTensor([task.src_dict.bos()])
eos_item = torch.LongTensor([task.src_dict.eos()])
pad_idx = task.src_dict.pad()

# Normalize the question
def pre_question(question, max_ques_words):
    question = question.lower().lstrip(",.!?*#:;~").replace('-', ' ').replace('/', ' ')
    question = re.sub(
        r"\s{2,}",
        ' ',
        question,
    )
    question = question.rstrip('\n')
    question = question.strip(' ')
    # truncate question
    question_words = question.split(' ')
    if len(question_words) > max_ques_words:
        question = ' '.join(question_words[:max_ques_words])
    return question

def encode_text(text, length=None, append_bos=False, append_eos=False):
    s = task.tgt_dict.encode_line(
        line=task.bpe.encode(text),
        add_if_not_exist=False,
        append_eos=False
    ).long()
    if length is not None:
        s = s[:length]
    if append_bos:
        s = torch.cat([bos_item, s])
    if append_eos:
        s = torch.cat([s, eos_item])
    return s

# Construct input for open-domain VQA task
def construct_sample(image: Image, question: str):
    patch_image = patch_resize_transform(image).unsqueeze(0)
    patch_mask = torch.tensor([True])

    question = pre_question(question, task.cfg.max_src_length)
    question = question + '?' if not question.endswith('?') else question
    src_text = encode_text(' {}'.format(question), append_bos=True, append_eos=True).unsqueeze(0)

    src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text])
    ref_dict = np.array([{'yes': 1.0}]) # just placeholder
    sample = {
        "id":np.array(['42']),
        "net_input": {
            "src_tokens": src_text,
            "src_lengths": src_length,
            "patch_images": patch_image,
            "patch_masks": patch_mask,
        },
        "ref_dict": ref_dict,
    }
    return sample
  
# Function to turn FP32 to FP16
def apply_half(t):
    if t.dtype is torch.float32:
        return t.to(dtype=torch.half)
    return t


# Function for image captioning
def open_domain_vqa(Image, Question):
    sample = construct_sample(Image, Question)
    sample = utils.move_to_cuda(sample) if use_cuda else sample
    sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample
    # Run eval step for open-domain VQA
    with torch.no_grad():
        result, scores = zero_shot_step(task, generator, models, sample)
    return result[0]['answer']


title = "OFA-Visual_Question_Answering"
description = "Gradio Demo for OFA-Visual_Question_Answering. Upload your own image (high-resolution images are recommended) or click any one of the examples, and click " \
              "\"Submit\" and then wait for OFA's answer. "
article = "<p style='text-align: center'><a href='https://github.com/OFA-Sys/OFA' target='_blank'>OFA Github " \
          "Repo</a></p> "
examples = [['cat-4894153_1920.jpg', 'where are the cats?'], ['men-6245003_1920.jpg', 'how many people are in the image?'], ['labrador-retriever-7004193_1920.jpg', 'what breed is the dog in the picture?'], ['Starry_Night.jpeg', 'what style does the picture belong to?']]
io = gr.Interface(fn=open_domain_vqa, inputs=[gr.inputs.Image(type='pil'), "textbox"], outputs=gr.outputs.Textbox(label="Answer"),
                  title=title, description=description, article=article, examples=examples,
                  allow_flagging=False, allow_screenshot=False)
io.launch(cache_examples=True)