File size: 5,967 Bytes
0d735a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging
import os
import sys
import json
from itertools import chain

import numpy as np
import torch
import torch.distributed as dist
from fairseq import distributed_utils, options, tasks, utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.logging import progress_bar
from fairseq.utils import reset_logging
from omegaconf import DictConfig

from utils import checkpoint_utils
from utils.eval_utils import eval_step

logging.basicConfig(
    format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
    level=os.environ.get("LOGLEVEL", "INFO").upper(),
    stream=sys.stdout,
)
logger = logging.getLogger("ofa.evaluate")


def apply_half(t):
    if t.dtype is torch.float32:
        return t.to(dtype=torch.half)
    return t


def main(cfg: DictConfig, **kwargs):
    utils.import_user_module(cfg.common)

    reset_logging()
    logger.info(cfg)

    assert (
        cfg.dataset.max_tokens is not None or cfg.dataset.batch_size is not None
    ), "Must specify batch size either with --max-tokens or --batch-size"

    # Fix seed for stochastic decoding
    if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
        np.random.seed(cfg.common.seed)
        utils.set_torch_seed(cfg.common.seed)

    use_fp16 = cfg.common.fp16
    use_cuda = torch.cuda.is_available() and not cfg.common.cpu

    if use_cuda:
        torch.cuda.set_device(cfg.distributed_training.device_id)

    # Load ensemble
    overrides = eval(cfg.common_eval.model_overrides)
    logger.info("loading model(s) from {}".format(cfg.common_eval.path))
    models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
        utils.split_paths(cfg.common_eval.path),
        arg_overrides=overrides,
        suffix=cfg.checkpoint.checkpoint_suffix,
        strict=(cfg.checkpoint.checkpoint_shard_count == 1),
        num_shards=cfg.checkpoint.checkpoint_shard_count,
    )

    # loading the dataset should happen after the checkpoint has been loaded so we can give it the saved task config
    task.load_dataset(cfg.dataset.gen_subset, task_cfg=saved_cfg.task)

    # Move models to GPU
    for model, ckpt_path in zip(models, utils.split_paths(cfg.common_eval.path)):
        if kwargs['ema_eval']:
            logger.info("loading EMA weights from {}".format(ckpt_path))
            model.load_state_dict(checkpoint_utils.load_ema_from_checkpoint(ckpt_path)['model'])
        model.eval()
        if use_fp16:
            model.half()
        if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
            model.cuda()
        model.prepare_for_inference_(cfg)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(cfg.dataset.gen_subset),
        max_tokens=cfg.dataset.max_tokens,
        max_sentences=cfg.dataset.batch_size,
        max_positions=utils.resolve_max_positions(
            task.max_positions(), *[m.max_positions() for m in models]
        ),
        ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=cfg.dataset.required_batch_size_multiple,
        seed=cfg.common.seed,
        num_shards=cfg.distributed_training.distributed_world_size,
        shard_id=cfg.distributed_training.distributed_rank,
        num_workers=cfg.dataset.num_workers,
        data_buffer_size=cfg.dataset.data_buffer_size,
    ).next_epoch_itr(shuffle=False)
    progress = progress_bar.progress_bar(
        itr,
        log_format=cfg.common.log_format,
        log_interval=cfg.common.log_interval,
        default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
    )

    # Initialize generator
    generator = task.build_generator(models, cfg.generation)

    results = []
    score_sum = torch.FloatTensor([0]).cuda()
    score_cnt = torch.FloatTensor([0]).cuda()
    for sample in progress:
        if "net_input" not in sample:
            continue
        sample = utils.move_to_cuda(sample) if use_cuda else sample
        sample = utils.apply_to_sample(apply_half, sample) if cfg.common.fp16 else sample
        with torch.no_grad():
            result, scores = eval_step(task, generator, models, sample)
        results += result
        score_sum += sum(scores) if scores is not None else 0
        score_cnt += len(scores) if scores is not None else 0
        progress.log({"sentences": sample["nsentences"]})

    gather_results = None
    if cfg.distributed_training.distributed_world_size > 1:
        gather_results = [None for _ in range(dist.get_world_size())]
        dist.all_gather_object(gather_results, results)
        dist.all_reduce(score_sum.data)
        dist.all_reduce(score_cnt.data)
    if score_cnt.item() > 0:
        logger.info("score_sum: {}, score_cnt: {}, score: {}".format(
            score_sum, score_cnt, round(score_sum.item() / score_cnt.item(), 4)
        ))

    if cfg.distributed_training.distributed_world_size == 1 or dist.get_rank() == 0:
        os.makedirs(cfg.common_eval.results_path, exist_ok=True)
        output_path = os.path.join(cfg.common_eval.results_path, "{}_predict.json".format(cfg.dataset.gen_subset))
        gather_results = list(chain(*gather_results)) if gather_results is not None else results
        with open(output_path, 'w') as fw:
            json.dump(gather_results, fw)


def cli_main():
    parser = options.get_generation_parser()
    parser.add_argument("--ema-eval", action='store_true', help="Use EMA weights to make evaluation.")
    args = options.parse_args_and_arch(parser)
    cfg = convert_namespace_to_omegaconf(args)
    distributed_utils.call_main(cfg, main, ema_eval=args.ema_eval)


if __name__ == "__main__":
    cli_main()