File size: 13,011 Bytes
0d735a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from dataclasses import dataclass, field
import logging
import os
import math
import torch
from typing import Dict, Optional

from fairseq import search
from fairseq.data import FairseqDataset, iterators
from fairseq.optim.amp_optimizer import AMPOptimizer
from fairseq.dataclass import FairseqDataclass
from fairseq.tasks import FairseqTask, register_task
from omegaconf import DictConfig


logger = logging.getLogger(__name__)


@dataclass
class OFAConfig(FairseqDataclass):
    data: Optional[str] = field(
        default=None,
        metadata={
            "help": "colon separated path to data directories list, will be iterated upon during epochs "
                    "in round-robin manner; however, valid and test data are always in the first directory "
                    "to avoid the need for repeating them in all directories"
        },
    )
    selected_cols: Optional[str] = field(
        default=None,
        metadata={"help": "selected cols"},
    )
    bpe_dir: Optional[str] = field(
        default=None,
        metadata={"help": "bpe dir"},
    )
    max_source_positions: int = field(
        default=1024, metadata={"help": "max number of tokens in the source sequence"}
    )
    max_target_positions: int = field(
        default=1024, metadata={"help": "max number of tokens in the target sequence"}
    )
    max_src_length: int = field(
        default=128, metadata={"help": "the maximum src sequence length"}
    )
    max_tgt_length: int = field(
        default=30, metadata={"help": "the maximum target sequence length"}
    )

    code_dict_size: int = field(
        default=8192, metadata={"help": "code dict size"}
    )
    patch_image_size: int = field(
        default=480, metadata={"help": "patch image size"}
    )
    num_bins: int = field(
        default=1000, metadata={"help": "number of quantization bins"}
    )

    imagenet_default_mean_and_std: bool = field(
        default=False,
        metadata={"help": "imagenet normalize"},
    )
    constraint_range: Optional[str] = field(
        default=None,
        metadata={"help": "constraint range"}
    )


@register_task("ofa", dataclass=OFAConfig)
class OFATask(FairseqTask):
    def __init__(self, cfg: OFAConfig, src_dict, tgt_dict):
        super().__init__(cfg)
        self.src_dict = src_dict
        self.tgt_dict = tgt_dict

    @classmethod
    def setup_task(cls, cfg: DictConfig, **kwargs):
        """Setup the task."""

        # load dictionaries
        src_dict = cls.load_dictionary(
            os.path.join(cfg.bpe_dir, "dict.txt")
        )
        tgt_dict = cls.load_dictionary(
            os.path.join(cfg.bpe_dir, "dict.txt")
        )
        src_dict.add_symbol("<mask>")
        tgt_dict.add_symbol("<mask>")
        for i in range(cfg.code_dict_size):
            src_dict.add_symbol("<code_{}>".format(i))
            tgt_dict.add_symbol("<code_{}>".format(i))
        # quantization
        for i in range(cfg.num_bins):
            src_dict.add_symbol("<bin_{}>".format(i))
            tgt_dict.add_symbol("<bin_{}>".format(i))

        logger.info("source dictionary: {} types".format(len(src_dict)))
        logger.info("target dictionary: {} types".format(len(tgt_dict)))
        return cls(cfg, src_dict, tgt_dict)

    def get_batch_iterator(
        self,
        dataset,
        max_tokens=None,
        max_sentences=None,
        max_positions=None,
        ignore_invalid_inputs=False,
        required_batch_size_multiple=1,
        seed=1,
        num_shards=1,
        shard_id=0,
        num_workers=0,
        epoch=1,
        data_buffer_size=0,
        disable_iterator_cache=False,
    ):
        assert isinstance(dataset, FairseqDataset)

        # initialize the dataset with the correct starting epoch
        dataset.set_epoch(epoch)

        # create mini-batches with given size constraints
        batch_sampler = [
            [j for j in range(i, min(i + max_sentences, len(dataset)))]
            for i in range(0, len(dataset), max_sentences)
        ]
        total_row_count = dataset.dataset.get_total_row_count()
        num_batches = math.ceil(math.ceil(total_row_count / num_shards) / max_sentences)
        if len(batch_sampler) < num_batches:
            batch_sampler.append([])

        # return a reusable, sharded iterator
        epoch_iter = iterators.EpochBatchIterator(
            dataset=dataset,
            collate_fn=dataset.collater,
            batch_sampler=batch_sampler,
            seed=seed,
            num_shards=1,
            shard_id=0,
            num_workers=num_workers,
            epoch=epoch,
            buffer_size=data_buffer_size
        )

        return epoch_iter

    def build_model(self, cfg: FairseqDataclass):
        model = super().build_model(cfg)
        bpe_dict = {
            "_name": "gpt2",
            "gpt2_encoder_json": os.path.join(self.cfg.bpe_dir, "encoder.json"),
            "gpt2_vocab_bpe": os.path.join(self.cfg.bpe_dir, "vocab.bpe")
        }
        bpe_dict = DictConfig(bpe_dict)
        self.bpe = self.build_bpe(bpe_dict)
        return model

    def build_generator(
        self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None, prefix_allowed_tokens_fn=None,
    ):
        """
        Build a :class:`~fairseq.SequenceGenerator` instance for this
        task.

        Args:
            models (List[~fairseq.models.FairseqModel]): ensemble of models
            args (fairseq.dataclass.configs.GenerationConfig):
                configuration object (dataclass) for generation
            extra_gen_cls_kwargs (Dict[str, Any]): extra options to pass
                through to SequenceGenerator
            prefix_allowed_tokens_fn (Callable[[int, torch.Tensor], List[int]]):
                If provided, this function constrains the beam search to
                allowed tokens only at each step. The provided function
                should take 2 arguments: the batch ID (`batch_id: int`)
                and a unidimensional tensor of token ids (`inputs_ids:
                torch.Tensor`). It has to return a `List[int]` with the
                allowed tokens for the next generation step conditioned
                on the previously generated tokens (`inputs_ids`) and
                the batch ID (`batch_id`). This argument is useful for
                constrained generation conditioned on the prefix, as
                described in "Autoregressive Entity Retrieval"
                (https://arxiv.org/abs/2010.00904) and
                https://github.com/facebookresearch/GENRE.
        """
        if getattr(args, "score_reference", False):
            from fairseq.sequence_scorer import SequenceScorer

            return SequenceScorer(
                self.target_dictionary,
                compute_alignment=getattr(args, "print_alignment", False),
            )

        from fairseq.sequence_generator import (
            # SequenceGenerator,
            SequenceGeneratorWithAlignment,
        )
        from models.sequence_generator import SequenceGenerator

        # Choose search strategy. Defaults to Beam Search.
        sampling = getattr(args, "sampling", False)
        sampling_topk = getattr(args, "sampling_topk", -1)
        sampling_topp = getattr(args, "sampling_topp", -1.0)
        diverse_beam_groups = getattr(args, "diverse_beam_groups", -1)
        diverse_beam_strength = getattr(args, "diverse_beam_strength", 0.5)
        match_source_len = getattr(args, "match_source_len", False)
        diversity_rate = getattr(args, "diversity_rate", -1)
        constrained = getattr(args, "constraints", False)
        if prefix_allowed_tokens_fn is None:
            prefix_allowed_tokens_fn = getattr(args, "prefix_allowed_tokens_fn", None)
        if (
            sum(
                int(cond)
                for cond in [
                    sampling,
                    diverse_beam_groups > 0,
                    match_source_len,
                    diversity_rate > 0,
                ]
            )
            > 1
        ):
            raise ValueError("Provided Search parameters are mutually exclusive.")
        assert sampling_topk < 0 or sampling, "--sampling-topk requires --sampling"
        assert sampling_topp < 0 or sampling, "--sampling-topp requires --sampling"

        if sampling:
            search_strategy = search.Sampling(
                self.target_dictionary, sampling_topk, sampling_topp
            )
        elif diverse_beam_groups > 0:
            search_strategy = search.DiverseBeamSearch(
                self.target_dictionary, diverse_beam_groups, diverse_beam_strength
            )
        elif match_source_len:
            # this is useful for tagging applications where the output
            # length should match the input length, so we hardcode the
            # length constraints for simplicity
            search_strategy = search.LengthConstrainedBeamSearch(
                self.target_dictionary,
                min_len_a=1,
                min_len_b=0,
                max_len_a=1,
                max_len_b=0,
            )
        elif diversity_rate > -1:
            search_strategy = search.DiverseSiblingsSearch(
                self.target_dictionary, diversity_rate
            )
        elif constrained:
            search_strategy = search.LexicallyConstrainedBeamSearch(
                self.target_dictionary, args.constraints
            )
        elif prefix_allowed_tokens_fn:
            search_strategy = search.PrefixConstrainedBeamSearch(
                self.target_dictionary, prefix_allowed_tokens_fn
            )
        else:
            search_strategy = search.BeamSearch(self.target_dictionary)

        extra_gen_cls_kwargs = extra_gen_cls_kwargs or {}
        if seq_gen_cls is None:
            if getattr(args, "print_alignment", False):
                seq_gen_cls = SequenceGeneratorWithAlignment
                extra_gen_cls_kwargs["print_alignment"] = args.print_alignment
            else:
                seq_gen_cls = SequenceGenerator

        return seq_gen_cls(
            models,
            self.target_dictionary,
            beam_size=getattr(args, "beam", 5),
            max_len_a=getattr(args, "max_len_a", 0),
            max_len_b=getattr(args, "max_len_b", 200),
            min_len=getattr(args, "min_len", 1),
            normalize_scores=(not getattr(args, "unnormalized", False)),
            len_penalty=getattr(args, "lenpen", 1),
            unk_penalty=getattr(args, "unkpen", 0),
            temperature=getattr(args, "temperature", 1.0),
            match_source_len=getattr(args, "match_source_len", False),
            no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0),
            search_strategy=search_strategy,
            constraint_range=self.cfg.constraint_range,
            **extra_gen_cls_kwargs,
        )

    def train_step(
        self, sample, model, criterion, optimizer, update_num, ignore_grad=False, **extra_kwargs
    ):
        """
        Do forward and backward, and return the loss as computed by *criterion*
        for the given *model* and *sample*.

        Args:
            sample (dict): the mini-batch. The format is defined by the
                :class:`~fairseq.data.FairseqDataset`.
            model (~fairseq.models.BaseFairseqModel): the model
            criterion (~fairseq.criterions.FairseqCriterion): the criterion
            optimizer (~fairseq.optim.FairseqOptimizer): the optimizer
            update_num (int): the current update
            ignore_grad (bool): multiply loss by 0 if this is set to True

        Returns:
            tuple:
                - the loss
                - the sample size, which is used as the denominator for the
                  gradient
                - logging outputs to display while training
        """
        model.train()
        model.set_num_updates(update_num)
        with torch.autograd.profiler.record_function("forward"):
            with torch.cuda.amp.autocast(enabled=(isinstance(optimizer, AMPOptimizer))):
                loss, sample_size, logging_output = criterion(model, sample, update_num=update_num)
        if ignore_grad:
            loss *= 0
        with torch.autograd.profiler.record_function("backward"):
            optimizer.backward(loss)
        return loss, sample_size, logging_output

    def max_positions(self):
        """Return the max sentence length allowed by the task."""
        return (self.cfg.max_source_positions, self.cfg.max_target_positions)

    @property
    def source_dictionary(self):
        """Return the source :class:`~fairseq.data.Dictionary`."""
        return self.src_dict

    @property
    def target_dictionary(self):
        """Return the target :class:`~fairseq.data.Dictionary`."""
        return self.tgt_dict