File size: 18,348 Bytes
0d735a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
import random

import torch
import torchvision.transforms as T
import torchvision.transforms.functional as F
import numpy as np
from PIL import Image


def crop(image, target, region, delete=True):
    cropped_image = F.crop(image, *region)

    target = target.copy()
    i, j, h, w = region

    # should we do something wrt the original size?
    target["size"] = torch.tensor([h, w])

    fields = ["labels", "area"]

    if "boxes" in target:
        boxes = target["boxes"]
        max_size = torch.as_tensor([w, h], dtype=torch.float32)
        cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
        cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
        cropped_boxes = cropped_boxes.clamp(min=0)
        area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
        target["boxes"] = cropped_boxes.reshape(-1, 4)
        target["area"] = area
        fields.append("boxes")

    if "polygons" in target:
        polygons = target["polygons"]
        num_polygons = polygons.shape[0]
        max_size = torch.as_tensor([w, h], dtype=torch.float32)
        start_coord = torch.cat([torch.tensor([j, i], dtype=torch.float32)
                                 for _ in range(polygons.shape[1] // 2)], dim=0)
        cropped_boxes = polygons - start_coord
        cropped_boxes = torch.min(cropped_boxes.reshape(num_polygons, -1, 2), max_size)
        cropped_boxes = cropped_boxes.clamp(min=0)
        target["polygons"] = cropped_boxes.reshape(num_polygons, -1)
        fields.append("polygons")

    if "masks" in target:
        # FIXME should we update the area here if there are no boxes?
        target['masks'] = target['masks'][:, i:i + h, j:j + w]
        fields.append("masks")

    # remove elements for which the boxes or masks that have zero area
    if delete and ("boxes" in target or "masks" in target):
        # favor boxes selection when defining which elements to keep
        # this is compatible with previous implementation
        if "boxes" in target:
            cropped_boxes = target['boxes'].reshape(-1, 2, 2)
            keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
        else:
            keep = target['masks'].flatten(1).any(1)

        for field in fields:
            target[field] = target[field][keep.tolist()]

    return cropped_image, target


def hflip(image, target):
    flipped_image = F.hflip(image)

    w, h = image.size

    target = target.copy()
    if "boxes" in target:
        boxes = target["boxes"]
        boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0])
        target["boxes"] = boxes

    if "polygons" in target:
        polygons = target["polygons"]
        num_polygons = polygons.shape[0]
        polygons = polygons.reshape(num_polygons, -1, 2) * torch.as_tensor([-1, 1]) + torch.as_tensor([w, 0])
        target["polygons"] = polygons

    if "masks" in target:
        target['masks'] = target['masks'].flip(-1)

    return flipped_image, target


def resize(image, target, size, max_size=None):
    # size can be min_size (scalar) or (w, h) tuple

    def get_size_with_aspect_ratio(image_size, size, max_size=None):
        w, h = image_size

        if (w <= h and w == size) or (h <= w and h == size):
            if max_size is not None:
                max_size = int(max_size)
                h = min(h, max_size)
                w = min(w, max_size)
            return (h, w)

        if w < h:
            ow = size
            oh = int(size * h / w)
        else:
            oh = size
            ow = int(size * w / h)

        if max_size is not None:
           max_size = int(max_size)
           oh = min(oh, max_size)
           ow = min(ow, max_size)

        return (oh, ow)

    def get_size(image_size, size, max_size=None):
        if isinstance(size, (list, tuple)):
            return size[::-1]
        else:
            return get_size_with_aspect_ratio(image_size, size, max_size)

    size = get_size(image.size, size, max_size)
    rescaled_image = F.resize(image, size, interpolation=Image.BICUBIC)

    if target is None:
        return rescaled_image

    ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size))
    ratio_width, ratio_height = ratios

    target = target.copy()
    if "boxes" in target:
        boxes = target["boxes"]
        scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height])
        target["boxes"] = scaled_boxes

    if "polygons" in target:
        polygons = target["polygons"]
        scaled_ratio = torch.cat([torch.tensor([ratio_width, ratio_height])
                                 for _ in range(polygons.shape[1] // 2)], dim=0)
        scaled_polygons = polygons * scaled_ratio
        target["polygons"] = scaled_polygons

    if "area" in target:
        area = target["area"]
        scaled_area = area * (ratio_width * ratio_height)
        target["area"] = scaled_area

    h, w = size
    target["size"] = torch.tensor([h, w])

    if "masks" in target:
        assert False
        # target['masks'] = interpolate(
        #     target['masks'][:, None].float(), size, mode="nearest")[:, 0] > 0.5

    return rescaled_image, target


class CenterCrop(object):
    def __init__(self, size):
        self.size = size

    def __call__(self, img, target):
        image_width, image_height = img.size
        crop_height, crop_width = self.size
        crop_top = int(round((image_height - crop_height) / 2.))
        crop_left = int(round((image_width - crop_width) / 2.))
        return crop(img, target, (crop_top, crop_left, crop_height, crop_width))


class ObjectCenterCrop(object):
    def __init__(self, size):
        self.size = size

    def __call__(self, img, target):
        image_width, image_height = img.size
        crop_height, crop_width = self.size

        x0 = float(target['boxes'][0][0])
        y0 = float(target['boxes'][0][1])
        x1 = float(target['boxes'][0][2])
        y1 = float(target['boxes'][0][3])

        center_x = (x0 + x1) / 2
        center_y = (y0 + y1) / 2
        crop_left = max(center_x-crop_width/2 + min(image_width-center_x-crop_width/2, 0), 0)
        crop_top = max(center_y-crop_height/2 + min(image_height-center_y-crop_height/2, 0), 0)

        return crop(img, target, (crop_top, crop_left, crop_height, crop_width), delete=False)


class RandomHorizontalFlip(object):
    def __init__(self, p=0.5):
        self.p = p

    def __call__(self, img, target):
        if random.random() < self.p:
            return hflip(img, target)
        return img, target


class RandomResize(object):
    def __init__(self, sizes, max_size=None, equal=False):
        assert isinstance(sizes, (list, tuple))
        self.sizes = sizes
        self.max_size = max_size
        self.equal = equal

    def __call__(self, img, target=None):
        size = random.choice(self.sizes)
        if self.equal:
            return resize(img, target, size, size)
        else:
            return resize(img, target, size, self.max_size)


class ToTensor(object):
    def __call__(self, img, target):
        return F.to_tensor(img), target


class Normalize(object):
    def __init__(self, mean, std, max_image_size=512):
        self.mean = mean
        self.std = std
        self.max_image_size = max_image_size

    def __call__(self, image, target=None):
        image = F.normalize(image, mean=self.mean, std=self.std)
        if target is None:
            return image, None
        target = target.copy()
        # h, w = image.shape[-2:]
        h, w = target["size"][0], target["size"][1]
        if "boxes" in target:
            boxes = target["boxes"]
            boxes = boxes / self.max_image_size
            target["boxes"] = boxes
        if "polygons" in target:
            polygons = target["polygons"]
            scale = torch.cat([torch.tensor([w, h], dtype=torch.float32)
                               for _ in range(polygons.shape[1] // 2)], dim=0)
            polygons = polygons / scale
            target["polygons"] = polygons
        return image, target


class Compose(object):
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, image, target):
        for t in self.transforms:
            image, target = t(image, target)
        return image, target

    def __repr__(self):
        format_string = self.__class__.__name__ + "("
        for t in self.transforms:
            format_string += "\n"
            format_string += "    {0}".format(t)
        format_string += "\n)"
        return format_string


class LargeScaleJitter(object):
    """
        implementation of large scale jitter from copy_paste
    """

    def __init__(self, output_size=512, aug_scale_min=0.3, aug_scale_max=2.0):
        self.desired_size = torch.tensor([output_size])
        self.aug_scale_min = aug_scale_min
        self.aug_scale_max = aug_scale_max

    def rescale_target(self, scaled_size, image_size, target):
        # compute rescaled targets
        image_scale = scaled_size / image_size
        ratio_height, ratio_width = image_scale

        target = target.copy()
        target["size"] = scaled_size

        if "boxes" in target:
            boxes = target["boxes"]
            scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height])
            target["boxes"] = scaled_boxes

        if "area" in target:
            area = target["area"]
            scaled_area = area * (ratio_width * ratio_height)
            target["area"] = scaled_area

        if "masks" in target:
            assert False
            masks = target['masks']
            # masks = interpolate(
            #     masks[:, None].float(), scaled_size, mode="nearest")[:, 0] > 0.5
            target['masks'] = masks
        return target

    def crop_target(self, region, target):
        i, j, h, w = region
        fields = ["labels", "area"]

        target = target.copy()
        target["size"] = torch.tensor([h, w])

        if "boxes" in target:
            boxes = target["boxes"]
            max_size = torch.as_tensor([w, h], dtype=torch.float32)
            cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
            cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
            cropped_boxes = cropped_boxes.clamp(min=0)
            area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
            target["boxes"] = cropped_boxes.reshape(-1, 4)
            target["area"] = area
            fields.append("boxes")

        if "masks" in target:
            # FIXME should we update the area here if there are no boxes?
            target['masks'] = target['masks'][:, i:i + h, j:j + w]
            fields.append("masks")

        # remove elements for which the boxes or masks that have zero area
        if "boxes" in target or "masks" in target:
            # favor boxes selection when defining which elements to keep
            # this is compatible with previous implementation
            if "boxes" in target:
                cropped_boxes = target['boxes'].reshape(-1, 2, 2)
                keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
            else:
                keep = target['masks'].flatten(1).any(1)

            for field in fields:
                target[field] = target[field][keep.tolist()]
        return target

    def pad_target(self, padding, target):
        target = target.copy()
        if "masks" in target:
            target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[1], 0, padding[0]))
        return target

    def __call__(self, image, target=None):
        image_size = image.size
        image_size = torch.tensor(image_size[::-1])

        random_scale = torch.rand(1) * (self.aug_scale_max - self.aug_scale_min) + self.aug_scale_min
        scaled_size = (random_scale * self.desired_size).round()

        scale = torch.maximum(scaled_size / image_size[0], scaled_size / image_size[1])
        scaled_size = (image_size * scale).round().int()

        scaled_image = F.resize(image, scaled_size.tolist(), interpolation=Image.BICUBIC)

        if target is not None:
            target = self.rescale_target(scaled_size, image_size, target)

        # randomly crop or pad images
        if random_scale >= 1:
            # Selects non-zero random offset (x, y) if scaled image is larger than desired_size.
            max_offset = scaled_size - self.desired_size
            offset = (max_offset * torch.rand(2)).floor().int()
            region = (offset[0].item(), offset[1].item(),
                      self.desired_size[0].item(), self.desired_size[0].item())
            output_image = F.crop(scaled_image, *region)
            if target is not None:
                target = self.crop_target(region, target)
        else:
            assert False
            padding = self.desired_size - scaled_size
            output_image = F.pad(scaled_image, [0, 0, padding[1].item(), padding[0].item()])
            if target is not None:
                target = self.pad_target(padding, target)

        return output_image, target


class OriginLargeScaleJitter(object):
    """
        implementation of large scale jitter from copy_paste
    """

    def __init__(self, output_size=512, aug_scale_min=0.3, aug_scale_max=2.0):
        self.desired_size = torch.tensor(output_size)
        self.aug_scale_min = aug_scale_min
        self.aug_scale_max = aug_scale_max

    def rescale_target(self, scaled_size, image_size, target):
        # compute rescaled targets
        image_scale = scaled_size / image_size
        ratio_height, ratio_width = image_scale

        target = target.copy()
        target["size"] = scaled_size

        if "boxes" in target:
            boxes = target["boxes"]
            scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height])
            target["boxes"] = scaled_boxes

        if "area" in target:
            area = target["area"]
            scaled_area = area * (ratio_width * ratio_height)
            target["area"] = scaled_area

        if "masks" in target:
            assert False
            masks = target['masks']
            # masks = interpolate(
            #     masks[:, None].float(), scaled_size, mode="nearest")[:, 0] > 0.5
            target['masks'] = masks
        return target

    def crop_target(self, region, target):
        i, j, h, w = region
        fields = ["labels", "area"]

        target = target.copy()
        target["size"] = torch.tensor([h, w])

        if "boxes" in target:
            boxes = target["boxes"]
            max_size = torch.as_tensor([w, h], dtype=torch.float32)
            cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
            cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
            cropped_boxes = cropped_boxes.clamp(min=0)
            area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
            target["boxes"] = cropped_boxes.reshape(-1, 4)
            target["area"] = area
            fields.append("boxes")

        if "masks" in target:
            # FIXME should we update the area here if there are no boxes?
            target['masks'] = target['masks'][:, i:i + h, j:j + w]
            fields.append("masks")

        # remove elements for which the boxes or masks that have zero area
        if "boxes" in target or "masks" in target:
            # favor boxes selection when defining which elements to keep
            # this is compatible with previous implementation
            if "boxes" in target:
                cropped_boxes = target['boxes'].reshape(-1, 2, 2)
                keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
            else:
                keep = target['masks'].flatten(1).any(1)

            for field in fields:
                target[field] = target[field][keep.tolist()]
        return target

    def pad_target(self, padding, target):
        target = target.copy()
        if "masks" in target:
            target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[1], 0, padding[0]))
        return target

    def __call__(self, image, target=None):
        image_size = image.size
        image_size = torch.tensor(image_size[::-1])

        out_desired_size = (self.desired_size * image_size / max(image_size)).round().int()

        random_scale = torch.rand(1) * (self.aug_scale_max - self.aug_scale_min) + self.aug_scale_min
        scaled_size = (random_scale * self.desired_size).round()

        scale = torch.minimum(scaled_size / image_size[0], scaled_size / image_size[1])
        scaled_size = (image_size * scale).round().int()

        scaled_image = F.resize(image, scaled_size.tolist())

        if target is not None:
            target = self.rescale_target(scaled_size, image_size, target)

        # randomly crop or pad images
        if random_scale > 1:
            # Selects non-zero random offset (x, y) if scaled image is larger than desired_size.
            max_offset = scaled_size - out_desired_size
            offset = (max_offset * torch.rand(2)).floor().int()
            region = (offset[0].item(), offset[1].item(),
                      out_desired_size[0].item(), out_desired_size[1].item())
            output_image = F.crop(scaled_image, *region)
            if target is not None:
                target = self.crop_target(region, target)
        else:
            padding = out_desired_size - scaled_size
            output_image = F.pad(scaled_image, [0, 0, padding[1].item(), padding[0].item()])
            if target is not None:
                target = self.pad_target(padding, target)

        return output_image, target


class RandomDistortion(object):
    """
    Distort image w.r.t hue, saturation and exposure.
    """

    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0, prob=0.5):
        self.prob = prob
        self.tfm = T.ColorJitter(brightness, contrast, saturation, hue)

    def __call__(self, img, target=None):
        if np.random.random() < self.prob:
            return self.tfm(img), target
        else:
            return img, target