OFA-vqa / utils /zero_shot_utils.py
yangapku's picture
first commit
0d735a2
raw
history blame
1.35 kB
import string
import math
import torch
from data import data_utils
def get_symbols_to_strip_from_output(generator):
if hasattr(generator, "symbols_to_strip_from_output"):
return generator.symbols_to_strip_from_output
else:
return {generator.bos, generator.eos}
def decode_fn(x, tgt_dict, bpe, generator, tokenizer=None):
x = tgt_dict.string(x.int().cpu(), extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator))
if bpe is not None:
x = bpe.decode(x)
if tokenizer is not None:
x = tokenizer.decode(x)
return x
def eval_vqa_gen(task, generator, models, sample):
hypos = task.inference_step(generator, models, sample)
results = []
for i, sample_id in enumerate(sample["id"].tolist()):
detok_hypo_str = decode_fn(hypos[i][0]["tokens"], task.tgt_dict, task.bpe, generator)
results.append({"question_id": sample_id, "answer": detok_hypo_str.strip()})
scores = [ref_dict.get(result['answer'], 0) for ref_dict, result in zip(sample['ref_dict'], results)]
return results, scores
def zero_shot_step(task, generator, models, sample):
generator.zero_shot = True
if task.cfg._name == 'vqa_gen':
generator.constraint_trie = None
return eval_vqa_gen(task, generator, models, sample)
else:
raise NotImplementedError