OFA-vqa / app.py
DtYXs's picture
Update app.py
febe0d2
import os
os.system('cd fairseq;'
'pip install ./; cd ..')
os.system('ls -l')
import torch
import numpy as np
import re
from fairseq import utils,tasks
from fairseq import checkpoint_utils
from fairseq import distributed_utils, options, tasks, utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from utils.zero_shot_utils import zero_shot_step
from tasks.mm_tasks.vqa_gen import VqaGenTask
from models.ofa import OFAModel
from PIL import Image
from torchvision import transforms
import gradio as gr
# Register VQA task
tasks.register_task('vqa_gen',VqaGenTask)
# turn on cuda if GPU is available
use_cuda = torch.cuda.is_available()
# use fp16 only when GPU is available
use_fp16 = False
os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/ofa_large_384.pt; '
'mkdir -p checkpoints; mv ofa_large_384.pt checkpoints/ofa_large_384.pt')
# specify some options for evaluation
parser = options.get_generation_parser()
input_args = ["", "--task=vqa_gen", "--beam=100", "--unnormalized", "--path=checkpoints/ofa_large_384.pt", "--bpe-dir=utils/BPE"]
args = options.parse_args_and_arch(parser, input_args)
cfg = convert_namespace_to_omegaconf(args)
# Load pretrained ckpt & config
task = tasks.setup_task(cfg.task)
models, cfg = checkpoint_utils.load_model_ensemble(
utils.split_paths(cfg.common_eval.path),
task=task
)
# Move models to GPU
for model in models:
model.eval()
if use_fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
# Initialize generator
generator = task.build_generator(models, cfg.generation)
# Image transform
from torchvision import transforms
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
patch_resize_transform = transforms.Compose([
lambda image: image.convert("RGB"),
transforms.Resize((cfg.task.patch_image_size, cfg.task.patch_image_size), interpolation=Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std),
])
# Text preprocess
bos_item = torch.LongTensor([task.src_dict.bos()])
eos_item = torch.LongTensor([task.src_dict.eos()])
pad_idx = task.src_dict.pad()
# Normalize the question
def pre_question(question, max_ques_words):
question = question.lower().lstrip(",.!?*#:;~").replace('-', ' ').replace('/', ' ')
question = re.sub(
r"\s{2,}",
' ',
question,
)
question = question.rstrip('\n')
question = question.strip(' ')
# truncate question
question_words = question.split(' ')
if len(question_words) > max_ques_words:
question = ' '.join(question_words[:max_ques_words])
return question
def encode_text(text, length=None, append_bos=False, append_eos=False):
s = task.tgt_dict.encode_line(
line=task.bpe.encode(text),
add_if_not_exist=False,
append_eos=False
).long()
if length is not None:
s = s[:length]
if append_bos:
s = torch.cat([bos_item, s])
if append_eos:
s = torch.cat([s, eos_item])
return s
# Construct input for open-domain VQA task
def construct_sample(image: Image, question: str):
patch_image = patch_resize_transform(image).unsqueeze(0)
patch_mask = torch.tensor([True])
question = pre_question(question, task.cfg.max_src_length)
question = question + '?' if not question.endswith('?') else question
src_text = encode_text(' {}'.format(question), append_bos=True, append_eos=True).unsqueeze(0)
src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text])
ref_dict = np.array([{'yes': 1.0}]) # just placeholder
sample = {
"id":np.array(['42']),
"net_input": {
"src_tokens": src_text,
"src_lengths": src_length,
"patch_images": patch_image,
"patch_masks": patch_mask,
},
"ref_dict": ref_dict,
}
return sample
# Function to turn FP32 to FP16
def apply_half(t):
if t.dtype is torch.float32:
return t.to(dtype=torch.half)
return t
# Function for image captioning
def open_domain_vqa(Image, Question):
sample = construct_sample(Image, Question)
sample = utils.move_to_cuda(sample) if use_cuda else sample
sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample
# Run eval step for open-domain VQA
with torch.no_grad():
result, scores = zero_shot_step(task, generator, models, sample)
return result[0]['answer']
title = "OFA-Visual_Question_Answering"
description = "Gradio Demo for OFA-Visual_Question_Answering. Upload your own image (high-resolution images are recommended) or click any one of the examples, and click " \
"\"Submit\" and then wait for OFA's answer. "
article = "<p style='text-align: center'><a href='https://github.com/OFA-Sys/OFA' target='_blank'>OFA Github " \
"Repo</a></p> "
examples = [['cat-4894153_1920.jpg', 'where are the cats?'], ['men-6245003_1920.jpg', 'how many people are in the image?'], ['labrador-retriever-7004193_1920.jpg', 'what breed is the dog in the picture?'], ['Starry_Night.jpeg', 'what style does the picture belong to?']]
io = gr.Interface(fn=open_domain_vqa, inputs=[gr.inputs.Image(type='pil'), "textbox"], outputs=gr.outputs.Textbox(label="Answer"),
title=title, description=description, article=article, examples=examples,
allow_flagging=False, allow_screenshot=False)
io.launch()