Spaces:
Running
Running
import string | |
import math | |
import torch | |
from data import data_utils | |
def get_symbols_to_strip_from_output(generator): | |
if hasattr(generator, "symbols_to_strip_from_output"): | |
return generator.symbols_to_strip_from_output | |
else: | |
return {generator.bos, generator.eos} | |
def decode_fn(x, tgt_dict, bpe, generator, tokenizer=None): | |
x = tgt_dict.string(x.int().cpu(), extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator)) | |
if bpe is not None: | |
x = bpe.decode(x) | |
if tokenizer is not None: | |
x = tokenizer.decode(x) | |
return x | |
def eval_vqa_gen(task, generator, models, sample): | |
hypos = task.inference_step(generator, models, sample) | |
results = [] | |
for i, sample_id in enumerate(sample["id"].tolist()): | |
detok_hypo_str = decode_fn(hypos[i][0]["tokens"], task.tgt_dict, task.bpe, generator) | |
results.append({"question_id": sample_id, "answer": detok_hypo_str.strip()}) | |
scores = [ref_dict.get(result['answer'], 0) for ref_dict, result in zip(sample['ref_dict'], results)] | |
return results, scores | |
def zero_shot_step(task, generator, models, sample): | |
generator.zero_shot = True | |
if task.cfg._name == 'vqa_gen': | |
generator.constraint_trie = None | |
return eval_vqa_gen(task, generator, models, sample) | |
else: | |
raise NotImplementedError | |