import os os.system('git clone https://github.com/pytorch/fairseq.git; cd fairseq;' 'pip install --use-feature=in-tree-build ./; cd ..') os.system('ls -l') import torch import numpy as np import re from fairseq import utils,tasks from fairseq import checkpoint_utils from fairseq import distributed_utils, options, tasks, utils from fairseq.dataclass.utils import convert_namespace_to_omegaconf from utils.zero_shot_utils import zero_shot_step from tasks.mm_tasks.vqa_gen import VqaGenTask from models.ofa import OFAModel from PIL import Image from torchvision import transforms import gradio as gr # Register VQA task tasks.register_task('vqa_gen',VqaGenTask) # turn on cuda if GPU is available use_cuda = torch.cuda.is_available() # use fp16 only when GPU is available use_fp16 = False os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/ofa_large_384.pt; ' 'mkdir -p checkpoints; mv ofa_large_384.pt checkpoints/ofa_large_384.pt') # specify some options for evaluation parser = options.get_generation_parser() input_args = ["", "--task=vqa_gen", "--beam=100", "--unnormalized", "--path=checkpoints/ofa_large_384.pt", "--bpe-dir=utils/BPE"] args = options.parse_args_and_arch(parser, input_args) cfg = convert_namespace_to_omegaconf(args) # Load pretrained ckpt & config task = tasks.setup_task(cfg.task) models, cfg = checkpoint_utils.load_model_ensemble( utils.split_paths(cfg.common_eval.path), task=task ) # Move models to GPU for model in models: model.eval() if use_fp16: model.half() if use_cuda and not cfg.distributed_training.pipeline_model_parallel: model.cuda() model.prepare_for_inference_(cfg) # Initialize generator generator = task.build_generator(models, cfg.generation) # Image transform from torchvision import transforms mean = [0.5, 0.5, 0.5] std = [0.5, 0.5, 0.5] patch_resize_transform = transforms.Compose([ lambda image: image.convert("RGB"), transforms.Resize((cfg.task.patch_image_size, cfg.task.patch_image_size), interpolation=Image.BICUBIC), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std), ]) # Text preprocess bos_item = torch.LongTensor([task.src_dict.bos()]) eos_item = torch.LongTensor([task.src_dict.eos()]) pad_idx = task.src_dict.pad() # Normalize the question def pre_question(question, max_ques_words): question = question.lower().lstrip(",.!?*#:;~").replace('-', ' ').replace('/', ' ') question = re.sub( r"\s{2,}", ' ', question, ) question = question.rstrip('\n') question = question.strip(' ') # truncate question question_words = question.split(' ') if len(question_words) > max_ques_words: question = ' '.join(question_words[:max_ques_words]) return question def encode_text(text, length=None, append_bos=False, append_eos=False): s = task.tgt_dict.encode_line( line=task.bpe.encode(text), add_if_not_exist=False, append_eos=False ).long() if length is not None: s = s[:length] if append_bos: s = torch.cat([bos_item, s]) if append_eos: s = torch.cat([s, eos_item]) return s # Construct input for open-domain VQA task def construct_sample(image: Image, question: str): patch_image = patch_resize_transform(image).unsqueeze(0) patch_mask = torch.tensor([True]) question = pre_question(question, task.cfg.max_src_length) question = question + '?' if not question.endswith('?') else question src_text = encode_text(' {}'.format(question), append_bos=True, append_eos=True).unsqueeze(0) src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text]) ref_dict = np.array([{'yes': 1.0}]) # just placeholder sample = { "id":np.array(['42']), "net_input": { "src_tokens": src_text, "src_lengths": src_length, "patch_images": patch_image, "patch_masks": patch_mask, }, "ref_dict": ref_dict, } return sample # Function to turn FP32 to FP16 def apply_half(t): if t.dtype is torch.float32: return t.to(dtype=torch.half) return t # Function for image captioning def open_domain_vqa(Image, Question): sample = construct_sample(Image, Question) sample = utils.move_to_cuda(sample) if use_cuda else sample sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample # Run eval step for open-domain VQA with torch.no_grad(): result, scores = zero_shot_step(task, generator, models, sample) return result[0]['answer'] title = "OFA-Visual_Question_Answering" description = "Gradio Demo for OFA-Visual_Question_Answering. Upload your own image (high-resolution images are recommended) or click any one of the examples, and click " \ "\"Submit\" and then wait for OFA's answer. " article = "

OFA Github " \ "Repo

" examples = [['cat-4894153_1920.jpg', 'where are the cats?'], ['men-6245003_1920.jpg', 'how many people are in the image?'], ['labrador-retriever-7004193_1920.jpg', 'what breed is the dog in the picture?'], ['Starry_Night.jpeg', 'what style does the picture belong to?']] io = gr.Interface(fn=open_domain_vqa, inputs=[gr.inputs.Image(type='pil'), "textbox"], outputs=gr.outputs.Textbox(label="Answer"), title=title, description=description, article=article, examples=examples, allow_flagging=False, allow_screenshot=False) io.launch(cache_examples=True)