File size: 3,394 Bytes
e5e9b34 571e8a3 e5e9b34 2d1fac5 e5e9b34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import torch
import scipy
import os
import streamlit as st
from transformers import set_seed, pipeline
from transformers import VitsTokenizer, VitsModel
from datasets import load_dataset, Audio
from src import *
#from huggingface_hub import login
#from dotenv import load_dotenv
#load_dotenv()
#HUGGINGFACE_KEY = os.environ.get("HUGGINGFACE_KEY")
#login(HUGGINGFACE_KEY)
########################
language_list = ['mos', 'fra', 'eng']
st.title("Demo: Automated Tools for Mooré Language")
tts, stt, trans, lid = st.tabs(["Text to speech", "Speech to text", "Translation", "Language ID"])
########################
with tts:
tts_text = st.text_area(label = "Please enter your text here:", value="", placeholder="ne y wĩndga")
tts_col1, tts_col2, = st.columns(2)
with tts_col1:
tts_lang = st.selectbox('Language of text', (language_list), format_func = decode_iso)
if st.button("Speak"):
st.divider()
with st.spinner(":rainbow[Synthesizing, please wait...]"):
synth = synthesize_facebook(tts_text, tts_lang)
st.audio(synth, sample_rate=16_000)
########################
with stt:
stt_file = st.file_uploader("Please upload an audio file:", type=['mp3', 'm4a'], key = "stt_uploader")
stt_lang = st.selectbox("Please select the language:" , (language_list), format_func = decode_iso)
if st.button("Transcribe"):
st.divider()
with st.spinner(":rainbow[Received your file, please wait while I process it...]"):
stt = transcribe(stt_file, stt_lang)
":violet[The transcription is:]"
':violet[ "' + stt + '"]'
########################
with trans:
trans_text = st.text_area(label = "Please enter your translation text here:", value="", placeholder="ne y wĩndga")
#trans_col1, trans_col2, trans_col3 = st.columns([.25, .25, .5])
trans_col1, trans_col2 = st.columns(2)
with trans_col1:
src_lang = st.selectbox('Translate from:', (language_list), format_func = decode_iso)
with trans_col2:
target_lang = st.selectbox('Translate to:', (language_list), format_func = decode_iso, index=1)
#with trans_col3:
# trans_model = st.selectbox("Translation model:",
# ("Facebook (nllb-200-distilled-600M)",
# "Helsinki NLP (opus-mt-mos-en)",
# "Masakhane (m2m100_418m_mos_fr_news)")
# )
if st.button("Translate"):
st.divider()
with st.spinner(":rainbow[Translating from " + decode_iso(src_lang) + " into " + decode_iso(target_lang) + ", please wait...]"):
translation = translate(trans_text, src_lang, target_lang) #, trans_model)
translation
########################
with lid:
langid_file = st.file_uploader("Please upload an audio file:", type=['mp3', 'm4a'], key = "lid_uploader")
if st.button("Identify"):
st.divider()
with st.spinner(":rainbow[Received your file, please wait while I process it...]"):
lang = identify_language(langid_file)
lang = decode_iso(lang)
":violet[The detected language is " + lang + "]"
# supported colors: blue, green, orange, red, violet, gray/grey, rainbow.
# https://docs.streamlit.io/library/api-reference/text/st.markdown
|