import librosa import torch from transformers import Wav2Vec2ForCTC, AutoProcessor from transformers import set_seed def transcribe(fp:str, target_lang:str) -> str: ''' For given audio file, transcribe it. Parameters ---------- fp: str The file path to the audio file. target_lang:str The ISO-3 code of the target language. Returns ---------- transcript:str The transcribed text. ''' # Ensure replicability set_seed(555) # Load transcription model model_id = "facebook/mms-1b-all" target_lang = "mos" processor = AutoProcessor.from_pretrained(model_id, target_lang=target_lang) model = Wav2Vec2ForCTC.from_pretrained(model_id, target_lang=target_lang, ignore_mismatched_sizes=True) # Process the audio signal, sampling_rate = librosa.load(fp, sr=16000) inputs = processor(signal, sampling_rate=16_000, return_tensors="pt") # Inference with torch.no_grad(): outputs = model(**inputs).logits ids = torch.argmax(outputs, dim=-1)[0] transcript = processor.decode(ids) return transcript