File size: 14,414 Bytes
f5cf172 81fe3b4 d0e126d 81fe3b4 f5cf172 81fe3b4 f5cf172 332bb9f d7e529b b4c3706 f5cf172 b9c3584 b4c3706 028db54 f5cf172 593cb11 444aecb f5cf172 8fc5044 f5cf172 8fc5044 f5cf172 8fc5044 f5cf172 593cb11 332bb9f 593cb11 444aecb b4c3706 f5cf172 8fc5044 f5cf172 8fc5044 f5cf172 b9c3584 b4c3706 b9c3584 8fc5044 b9c3584 8fc5044 b9c3584 8fc5044 b9c3584 b4c3706 24c2e60 b4c3706 24c2e60 b4c3706 028db54 24c2e60 f5cf172 593cb11 f5cf172 593cb11 f5cf172 593cb11 f5cf172 32515b5 f5cf172 b4c3706 32515b5 444aecb 32515b5 f5cf172 593cb11 f5cf172 593cb11 b4c3706 32515b5 f5cf172 b4c3706 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import torch
import scipy
import os
import streamlit as st
import pandas as pd
from transformers import pipeline #set_seed,
from transformers import VitsTokenizer, VitsModel
from datasets import load_dataset, Audio
from huggingface_hub.inference_api import InferenceApi
from src import *
########################
col1, col2 = st.columns([20,3])
with col2:
st.image('logo.png', use_container_width=True)
with col1:
st.title("Mockingbird")
st.header("A demo of open Text to Speech tools")
tts, about = st.tabs(["Text to speech", "**About**"])
########################
with tts:
# Configurations -- language choice and text
tts_lang = st.selectbox('Language of text', (language_list), format_func = decode_iso)
tts_text = st.text_area(label = "Please enter your sentence here:",
value="", placeholder=placeholders[tts_lang] )
target_speaker_file = st.file_uploader("If you would like to test voice conversion, you may upload your audio below. You should upload one file in .wav format. If you don't, a default file will be used.",
type=['wav'])
# Inference
if st.button("Generate"):
# Warning about alphabet support
if tts_lang in ['rus', 'fas']:
st.warning("WARNING! On Windows, ESpeak-NG has trouble synthesizing output when input is provided from non-Latin alphabets.")
st.divider()
# Synthesis
with st.spinner(":rainbow[Synthesizing, please wait... (this will be slowest the first time you generate audio in a new language)]"):
if tts_text == "":
tts_text=placeholders[tts_lang]
# First, make the audio
base_mms = synth_mms(tts_text, models[tts_lang]['mms'])
base_coqui= synth_coqui(tts_text, models[tts_lang]['coqui'])
base_espeakng= synth_espeakng(tts_text, models[tts_lang]['espeakng'])
try:
base_toucan= synth_toucan(tts_text, models[tts_lang]['toucan'])
except:
base_toucan=None
base_piper= synth_piper(tts_text, models[tts_lang]['piper'])
if tts_lang=="swh":
finetuned_mms1 = synth_mms(tts_text, "khof312/mms-tts-swh-female-1")
finetuned_mms2 = synth_mms(tts_text, "khof312/mms-tts-swh-female-2")
if tts_lang=="spa":
finetuned_mms1 = synth_mms(tts_text, "ylacombe/mms-spa-finetuned-argentinian-monospeaker")
finetuned_mms2 = synth_mms(tts_text, "ylacombe/mms-spa-finetuned-chilean-monospeaker")
finetuned_mms3 = synth_mms(tts_text, "ylacombe/mms-spa-finetuned-colombian-monospeaker")
finetuned_mms4 = synth_mms(tts_text, "khof312/mms-tts-spa-female")
if tts_lang=="lin":
finetuned_mms1 = synth_mms(tts_text, "khof312/mms-tts-lin-female")
try:
finetuned_africanvoices = synth_africanvoices(tts_text, models[tts_lang]['africanvoices'])
except:
pass
#vc_mms
#vc_coqui
#vc_espeakng
"## Synthesis"
"### Default models"
row1 = st.columns([1,1,2])
row2 = st.columns([1,1,2])
row3 = st.columns([1,1,2])
row4 = st.columns([1,1,2])
row5 = st.columns([1,1,2])
row6 = st.columns([1,1,2])
row1[0].write("**Model**")
row1[1].write("**Configuration**")
row1[2].write("**Audio**")
if base_mms is not None:
row2[0].write(f"[Meta MMS](https://huggingface.co/docs/transformers/main/en/model_doc/mms)")
row2[1].write("default")
row2[2].audio(base_mms[0], sample_rate = base_mms[1])
if base_coqui is not None:
row3[0].write(f"[Coqui](https://docs.coqui.ai/en/latest/index.html)")
row3[1].write("default")
row3[2].audio(base_coqui[0], sample_rate = base_coqui[1])
if base_espeakng is not None:
row4[0].write(f"[Espeak-ng](https://github.com/espeak-ng/espeak-ng)")
row4[1].write("default")
row4[2].audio(base_espeakng[0], sample_rate = base_espeakng[1])
if base_toucan is not None:
row5[0].write(f"[IMS-Toucan](https://github.com/DigitalPhonetics/IMS-Toucan)")
row5[1].write("default")
row5[2].audio(base_toucan[0], sample_rate = base_toucan[1])
if base_piper is not None:
row6[0].write(f"[Piper](https://github.com/rhasspy/piper)")
row6[1].write("default")
row6[2].audio(base_piper[0], sample_rate = base_piper[1])
#################################################################
if tts_lang == "swh":
"### Fine Tuned"
row1 = st.columns([1,1,2])
row2 = st.columns([1,1,2])
row3 = st.columns([1,1,2])
row1[0].write("**Model**")
row1[1].write("**Configuration**")
row1[2].write("**Audio**")
row2[0].write(f"Meta MMS")
row2[1].write("[female 1](https://huggingface.co/khof312/mms-tts-swh-female-1)")
row2[2].audio(finetuned_mms1[0], sample_rate = finetuned_mms1[1])
row3[0].write(f"Meta MMS")
row3[1].write("[female 2](https://huggingface.co/khof312/mms-tts-swh-female-2)")
row3[2].audio(finetuned_mms2[0], sample_rate = finetuned_mms2[1])
if tts_lang == "spa":
"### Fine Tuned"
row1 = st.columns([1,1,2])
row2 = st.columns([1,1,2])
row3 = st.columns([1,1,2])
row4 = st.columns([1,1,2])
row5 = st.columns([1,1,2])
row1[0].write("**Model**")
row1[1].write("**Configuration**")
row1[2].write("**Audio**")
row2[0].write(f"Meta MMS")
row2[1].write("[ylacombe - Argentinian](https://huggingface.co/ylacombe/mms-spa-finetuned-argentinian-monospeaker)")
row2[2].audio(finetuned_mms1[0], sample_rate = finetuned_mms1[1])
row3[0].write(f"Meta MMS")
row3[1].write("[ylacombe - Chilean](https://huggingface.co/ylacombe/mms-spa-finetuned-chilean-monospeaker)")
row3[2].audio(finetuned_mms2[0], sample_rate = finetuned_mms2[1])
row4[0].write(f"Meta MMS")
row4[1].write("[ylacombe - Colombian](https://huggingface.co/ylacombe/mms-spa-finetuned-colombian-monospeaker)")
row4[2].audio(finetuned_mms3[0], sample_rate = finetuned_mms3[1])
row5[0].write(f"Meta MMS")
row5[1].write("[khof312 - female](https://huggingface.co/khof312/mms-tts-spa-female)")
row5[2].audio(finetuned_mms4[0], sample_rate = finetuned_mms4[1])
if tts_lang == "lin":
"### Fine Tuned"
row1 = st.columns([1,1,2])
row2 = st.columns([1,1,2])
row3 = st.columns([1,1,2])
row1[0].write("**Model**")
row1[1].write("**Configuration**")
row1[2].write("**Audio**")
row2[0].write(f"Meta MMS")
row2[1].write("[khof312 - female](https://huggingface.co/khof312/mms-tts-lin-female)")
row2[2].audio(finetuned_mms1[0], sample_rate = finetuned_mms1[1])
try:
row3[0].write(f"African voices")
row3[1].write("[African Voices]()")
row3[2].audio(finetuned_africanvoices[0], sample_rate = finetuned_africanvoices[1])
except:
pass
st.divider()
"## Voice conversion" #################################################################
st.warning('''Note: The naturalness of the audio will only be as good as that of the audio in "default models" above.''')
if target_speaker_file is not None:
rate, wav = scipy.io.wavfile.read(target_speaker_file)
scipy.io.wavfile.write("target_speaker_custom.wav", data=wav, rate=rate)
target_speaker = "target_speaker_custom.wav"
else:
target_speaker = "target_speaker.wav"
if base_mms is not None:
scipy.io.wavfile.write("source_speaker_mms.wav", rate=base_mms[1], data=base_mms[0].T)
converted_mms = convert_coqui('source_speaker_mms.wav', target_speaker)
if base_coqui is not None:
scipy.io.wavfile.write("source_speaker_coqui.wav", rate=base_coqui[1], data=base_coqui[0].T)
converted_coqui = convert_coqui('source_speaker_coqui.wav', target_speaker)
if base_espeakng is not None:
scipy.io.wavfile.write("source_speaker_espeakng.wav", rate=base_espeakng[1], data=base_espeakng[0].T)
converted_espeakng = convert_coqui('source_speaker_espeakng.wav', target_speaker)
scipy.io.wavfile.write("source_speaker_toucan.wav", rate=base_toucan[1], data=base_toucan[0].T)
converted_toucan = convert_coqui('source_speaker_toucan.wav', target_speaker)
row1 = st.columns([1,1,2])
row2 = st.columns([1,1,2])
row3 = st.columns([1,1,2])
row4 = st.columns([1,1,2])
row1[0].write("**Model**")
row1[1].write("**Configuration**")
row1[2].write("**Audio**")
if base_mms is not None:
row1[0].write(f"Meta MMS")
row1[1].write(f"converted")
row1[2].audio(converted_mms[0], sample_rate = converted_mms[1])
if base_coqui is not None:
row2[0].write(f"Coqui")
row2[1].write(f"converted")
row2[2].audio(converted_coqui[0], sample_rate = converted_coqui[1])
if base_espeakng is not None:
row3[0].write(f"Espeak-ng")
row3[1].write(f"converted")
row3[2].audio(converted_espeakng[0], sample_rate = converted_espeakng[1])
row4[0].write(f"IMS Toucan")
row4[1].write(f"converted")
row4[2].audio(converted_toucan[0], sample_rate = converted_toucan[1])
#row3[0].write("MMS-TTS-SWH")
#row3[1].audio(synth, sample_rate=16_000)
#row3[2].audio(synth, sample_rate=16_000)
#st.audio(synth, sample_rate=16_000)
#data.write(np.random.randn(10, 1)
#col1.subheader("A wide column with a chart")
#col1.line_chart(data)
#col2.subheader("A narrow column with the data")
#col2.write(data)
with about:
#st.header("How it works")
st.markdown('''# Mockingbird TTS Demo
This page is a demo of the openly available Text to Speech models for various languages of interest. Currently, 3 synthesizers with multilingual offerings are supported out of the box:
- [**Meta's Massively Multilingual Speech (MMS)**](https://ai.meta.com/blog/multilingual-model-speech-recognition/) model, which supports over 1000 languages.[^1]
- [**IMS Toucan**](https://github.com/DigitalPhonetics/IMS-Toucan), which supports 7000 languages.[^4]
- [**ESpeak-NG's**](https://github.com/espeak-ng/espeak-ng/tree/master)'s synthetic voices**[^3]
On a case-by-case basis, for different languages of interest, I have added:
- [**Coqui's TTS**](https://docs.coqui.ai/en/latest/#) package;[^2] while no longer supported, Coqui acted as a hub for TTS model hosting and these models are still available. Languages must be added on a model-by-model basis.
- Specific fine-tuned variants of Meta's MMS (either fine-tuned by [Yoach Lacombe](https://huggingface.co/ylacombe), or fine-tuned by me using his scripts).
I am in the process of adding support for:
- [**Piper**](https://github.com/rhasspy/piper), a TTS system that supports multiple voices per language and approximately 30 languages. To test different voices, please see the [Huggingface demo](https://huggingface.co/spaces/k2-fsa/text-to-speech).[^5]
- [**African Voices**](https://github.com/neulab/AfricanVoices), a CMU research project that fine-tuned synthesizers for different African languages. The site hosting the synthesizers is deprecated but they can be downloaded from Google's Wayback Machine. [^6]
Voice conversion is currently achieved through Coqui.
Notes:
1. ESpeak-NG seems to have the worst performance out of the box, but it has a lot of options for controlling voice output.
2. Where a synthesizer supports multiple models/voices, I manually pick the appropriate model.
3. Not all synthesizers support a given language.
[^1]: Endpoints used are of the form https://huggingface.co/facebook/mms-tts-[LANG].
Learn more:
[Docs](https://huggingface.co/docs/transformers/model_doc/mms) |
[Paper](https://arxiv.org/abs/2305.13516) |
[Supported languages](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html)
[^2]: [Available models](https://github.com/coqui-ai/TTS/blob/dev/TTS/.models.json)
[^3]: [Language list](https://github.com/espeak-ng/espeak-ng/blob/master/docs/languages.md)
[^4]: Language list is available in the Gradio API documentation [here](https://huggingface.co/spaces/Flux9665/MassivelyMultilingualTTS).
[^5]: The list of available voices is [here](https://github.com/rhasspy/piper/blob/master/VOICES.md), model checkpoints are [here](https://huggingface.co/datasets/rhasspy/piper-checkpoints/tree/main), and they can be tested [here](https://rhasspy.github.io/piper-samples/).
[^6]:
''')
|